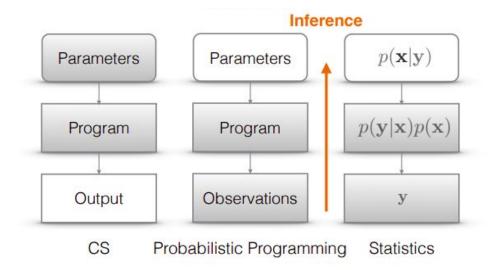
Probabilistic Programming with Pyro

Introduction

What is **Probabilistic Programming** (PP)?

- A common misconception: PP is **not** about writing software that behaves probabilistically.
- Rather, PP is a method of **Bayesian statistical modelling** based on representing causal models as executable programs.



https://towardsdatascience.com/intro-to-probabilisticprogramming-b47c4e926ec5

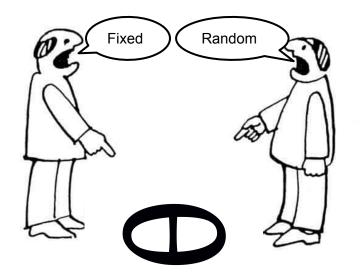
Background: Frequentist vs. Bayesian statistics

Frequentists view the:

- true parameters $\underline{\theta}$ as <u>fixed</u>
- data X as random
- estimators f(X) as random

Bayesians view the:

- true parameters θ as **random**
- data <u>X</u> as <u>fixed</u>
- estimators f(X) as fixed



Background: Frequentist vs. Bayesian statistics

Frequentists view the:

- true parameters $\underline{\theta}$ as <u>fixed</u>
- data X as random
- estimators f(X) as random

Confidence Interval:

 $\mathsf{P}\{ \mathsf{I}(\mathbf{X}) < \underline{\theta} < \mathsf{u}(\mathbf{X}) \} = 95\%$

"When sampling **X** from a population many times, the estimated lower bound $I(\mathbf{X})$ and upper bound $u(\mathbf{X})$ will contain the true parameter value $\underline{\theta}$ 95% of the time." Bayesians view the:

- true parameters θ as random
- data <u>X</u> as <u>fixed</u>
- estimators f(X) as fixed

Credible Interval:

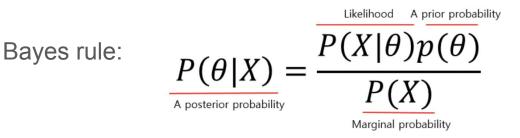
 $\mathsf{P}\{\,\mathsf{I}(\underline{X}) < \pmb{\theta} < \mathsf{u}(\underline{X})\,\} = 95\%$

"When sampling $\boldsymbol{\theta}$ from a distribution many times, the sampled value will be between lower bound $l(\underline{X})$ and upper bound $u(\underline{X})$ 95% of the time."

Many statisticians see both approaches as useful depending on the type of question. (Read more: https://www.stat.umn.edu/geyer/3701/notes/mcmc-bayes.html)

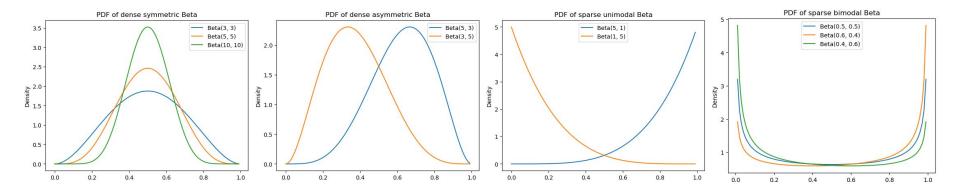
Background: Frequentist vs. Bayesian statistics

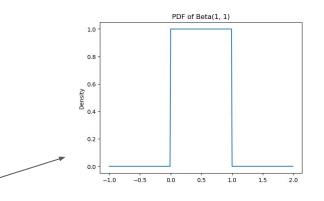
- For the Bayesian, θ being random means that it has a probability distribution.
 - **Prior:** $P(\theta)$ *"What distribution do we think \theta has before evidence?"*
 - **Posterior:** $P(\theta \mid X)$ *"What distribution does* θ *has after evidence?"*
- Related through **Likelihood:** $L(\theta; X) \equiv P(X | \theta)$



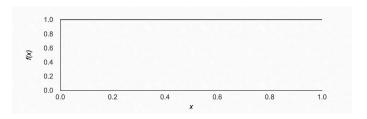
- Imagine flipping a coin N times to determine if biased or not:
 x_i ~ Bernoulli(p)
- What's a reasonable **prior** distribution for the parameter p?

- Introducing the Beta distribution: $p \sim Beta(\alpha, \beta)$
- Can be considered:
 - A generalization of the uniform distribution
 - A probability distribution over *probabilities* (i.e., samples will be in [0, 1])





• Let's assume that the prior P(p) = Beta(1,1)



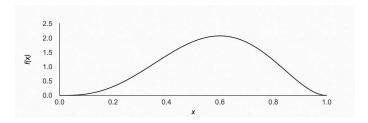
• Now we flip the coin 5 times and observe **3** heads and **2** tails.

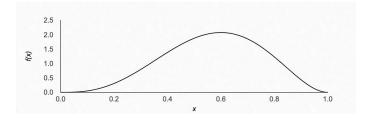
• It can be shown* that the posterior P(p | X) will also be a Beta distribution:

P(p | X) = Beta(1 + 3, 1 + 2)

- The posterior has a lot of uncertainty.
 - 0.5 is well within the credible interval.

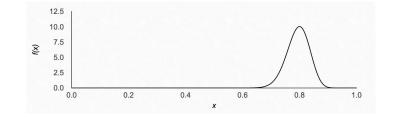
* https://en.wikipedia.org/wiki/Conjugate_prior





- Now we flip the coin 95 more times and observe **77** heads and **18** tails.
- Updating the posterior again:

P(p | X) = Beta(1 + **80**, 1 + **20**)



• We are now quite certain that the coin is biased!

Background: Back to PP...

Some problems can be solved analytically like this, but:

- Bayesian models can get indefinitely complex.
 - What if multiple coins with different unknown probabilities?
 - What if we wanted priors for the α , β in the Beta distribution (hyperpriors)?
 - What if we had latent variables?

• Calculating the posterior can be mathematically intractable.

Background: Back to PP...

Instead of doing that... what if we "implement" the model as a data-generating program and use automatic tools to estimate the posterior?

Coin example as pseudocode:

Program generate_data(N, α , β):

```
p := Beta(\alpha, \beta).sample()
```

```
For 0 \le i < N:
x_i := Bernoulli(p).sample()
```

return x

What is **Pyro**?

Combines PP with Deep Learning (PyTorch as a backend).

Question: When would full Bayesian inference be useful in ML?

What is **Pyro** (nuts and bolts)?

- 1. Methods and context managers for implementing Bayesian models.
- 2. Tools for statistical inference, given a data-generating model function:
 - a. Stochastic Variational Inference (SVI)
 - b. Markov Chain Monte Carlo (MCMC)
- 3. A lot of other useful tools that I won't discuss today.

How does Pyro implement models?

Three main components:

- 1. **pyro.sample** samples a value with a given name (or "site") from a dist.
 - a. A special "obs" keyword argument must be used to indicate observed variables.
- 2. **pyro.param** is used to declare a tunable parameter.
 - a. Stored in a global *parameter store* dict for future access.
 - b. Allows for constraints on parameter values (e.g., must be greater than 0).
- 3. **pyro.plate** is used for independently and identically distributed (iid) samples.
 - a. Think of it as replacing for-loops, like in the coin example.

How does Pyro represent tensors?

Sample shape: the *iid* dimensions of the tensor (plate)

Batch shape: the *conditionally independent* dimensions of the tensor

Event shape: the *conditionally dependent* dimensions of the tensor

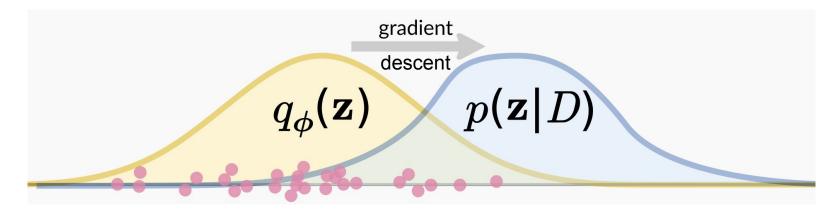
Always safe to assume dependence, but declaring independence when appropriate can make computations faster.

https://ericmjl.github.io/blog/2019/5/29/reasoning-about-shapes-and-probability-distributions/

	Distribution	Draws	Event Shape	Batch Shape	Sample Shape	Plain English
			()	()	()	one draw from one normal
			()	()	(2,)	two draws from one normal
			()	(2,)	()	one draw from two normals
			()	(2,)	(2,)	two draws from two normals
	/		(2,)	()	()	one draw from a bivariate normal
	/		(2,)	()	(2,)	two draws from a bivariate normal
	1		(2,)	(2,)	()	one draw from two bivariate normals
s/	<u>/</u>		(2,)	(2,)	(2,)	two draws from two bivariate normals

Inference methods: SVI

- Approximate posterior $P_{\theta}(Z|X)$ with a simpler distribution $Q_{\omega}(Z)$
 - Q is called the **guide** in Pyro.
 - Can be defined manually, or with an AutoGuide function.
- Use stochastic gradient descent on both θ and ϕ to move Q closer to P.



https://matsen.fhcrc.org/general/2019/08/24/vbpi.html

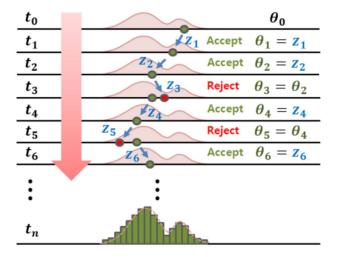
Inference methods: SVI

- Approximate posterior $P_{\theta}(Z|X)$ with a simpler distribution $Q_{\phi}(Z)$
 - Q is called the **guide** in Pyro.
 - Can be defined manually, or with an AutoGuide function.
- Use stochastic gradient descent on both θ and ϕ to move Q closer to P.
- Uses a special loss function called the "evidence lower bound" (ELBO):

$$ext{ELBO} \equiv \mathbb{E}_{q_{\phi}(\mathbf{z})} \left[\log p_{ heta}(\mathbf{x}, \mathbf{z}) - \log q_{\phi}(\mathbf{z})
ight]$$

Inference methods: MCMC

- The general idea of MCMC is that you can create a Markov Chain of samples that will eventually converge to the posterior dist.
 - Start with an initial sample θ_0 .
 - Create a *proposal* by sampling θ_i from some simpler distribution Q($\theta_i | \theta_{i-1}$)
 - Accept the proposal proportionally to the *ratio* of $P(\theta_i | X)$ to $P(\theta_{i-1} | X)$
 - Continue indefinitely



https://www.researchgate.net/publication/334001505_Adaptive_Markov_chain_Monte_C arlo_algorithms_for_Bayesian_inference_recent_advances_and_comparative_study

Inference methods: MCMC

- The general idea of MCMC is that you can create a Markov Chain of samples that will eventually converge to the posterior dist.
 - Start with an initial sample θ_0 .
 - Create a *proposal* by sampling θ_i from some simpler distribution Q($\theta_i | \theta_{i-1}$)
 - Accept the proposal proportionally to the *ratio* of $P(\theta_i | X)$ to $P(\theta_{i-1} | X)$
 - Continue indefinitely
- In practice, Pyro's MCMC uses a more complex algorithm called NUTS.
 - Based on Hamiltonian Monte Carlo (HMC), which automatically computes proposal dist. Q.
 - Need only provide model function and other hyperparameters.

SVI vs MCMC

SVI

- + Faster
- + Scalable
- Biased estimator
- May get stuck in local optimum and not converge to true posterior

MCMC

- + Unbiased estimator
- + Guaranteed convergence with enough samples
- Slower
- Requires a large number of samples

Rule of thumb: MCMC when working with very small data and need best estimate possible; SVI if working with large(r) dataset.

Supplementary: connections between ML and statistics

- Maximum Likelihood Estimation (MLE):
 - Frequentist approach to finding a point estimate of optimal parameters
 - Corresponds to a basic loss function.
- Maximum A Posteriori Estimation (MAP):
 - Bayesian approach to point estimation that incorporates a prior
 - Corresponds to loss with regularization.
- The gap filled by Pyro is when one wants to perform full Bayesian inference.
 - I.e., compute posterior distribution rather than a point estimate.

MLE	MAP	Bayesian Inference	
θ* = argmax P(X θ)	θ* = argmax P(X θ) P(θ)	$P(\theta X) = P(X \theta) P(\theta) / P(X)$	
Ordinary loss ℒ = error(ŷ, y)	Loss with regularization \mathcal{L} = error(\hat{y} , y) + λ R(w)	??	

Supplementary: connections between ML and statistics

• Common ML loss functions and the equivalent likelihood/prior distributions:

Cross-entropy loss: $\mathcal{L} = -\Sigma y \log(\hat{y})$	Logistic likelihood
Absolute error loss (L1): $\mathcal{L} = y - \hat{y} $	Laplace likelihood
OLS loss (L2): $\mathscr{L} = (y - \hat{y})^2$	Gaussian likelihood
Lasso loss (OLS with L1 reg)	Gaussian likelihood w/ Laplace prior
Ridge loss (OLS with L2 reg)	Gaussian likelihood w/ Gaussian prior

• Note: all probability distributions have a corresponding loss function, but not all loss functions correspond to a valid probability distribution!