
Probabilistic Programming with Pyro
Introduction



What is Probabilistic Programming (PP)?

● A common misconception: PP is not about writing software that behaves 
probabilistically.

● Rather, PP is a method of Bayesian statistical modelling – based on 
representing causal models as executable programs.

https://towardsdatascience.com/intro-to-probabilistic-
programming-b47c4e926ec5



Background: Frequentist vs. Bayesian statistics

Fixed Random

Frequentists view the:
● true parameters θ as fixed
● data X as random
● estimators f(X) as random

Bayesians view the:
● true parameters θ as random
● data X as fixed
● estimators f(X) as fixed



Background: Frequentist vs. Bayesian statistics
Frequentists view the:
● true parameters θ as fixed
● data X as random
● estimators f(X) as random

Confidence Interval:

P{ l(X) < θ < u(X) } = 95%

“When sampling X from a population 
many times, the estimated lower 
bound l(X) and upper bound u(X) will 
contain the true parameter value θ 
95% of the time.”

Credible Interval:

P{ l(X) < θ < u(X) } = 95%

“When sampling θ from a 
distribution many times, the sampled 
value will be between lower bound 
l(X) and upper bound u(X) 95% of 
the time.”

Bayesians view the:
● true parameters θ as random
● data X as fixed
● estimators f(X) as fixed

Many statisticians see both approaches as useful depending on the type of question.
(Read more: https://www.stat.umn.edu/geyer/3701/notes/mcmc-bayes.html)



Background: Frequentist vs. Bayesian statistics

● For the Bayesian, θ being random means that it has a probability distribution.
○ Prior: P(θ)                     “What distribution do we think θ has before evidence?”
○ Posterior: P(θ | X)        “What distribution does θ has after evidence?”

● Related through Likelihood: L(θ ; X) ≡ P(X | θ)

● Bayes rule: 



Background: simple example

● Imagine flipping a coin N times to determine if biased or not:
○ xi ~ Bernoulli(p)

● What’s a reasonable prior distribution for the parameter p?



Background: simple example

● Introducing the Beta distribution: p ~ Beta(α, β)
● Can be considered:

○ A generalization of the uniform distribution
○ A probability distribution over probabilities (i.e., samples will be in [0, 1])



Background: simple example

● Let’s assume that the prior P(p) = Beta(1,1)

● Now we flip the coin 5 times and observe 3 heads and 2 tails.

● It can be shown* that the posterior P(p | X) will also be a Beta distribution:

P(p | X) = Beta(1 + 3, 1 + 2)

* https://en.wikipedia.org/wiki/Conjugate_prior

● The posterior has a lot of uncertainty.
○ 0.5 is well within the credible interval.



Background: simple example

● Now we flip the coin 95 more times and observe 77 heads and 18 tails.

● Updating the posterior again:

P(p | X) = Beta(1 + 80, 1 + 20)

● We are now quite certain that the coin is biased! 



Background: Back to PP…

Some problems can be solved analytically like this, but:

● Bayesian models can get indefinitely complex.
○ What if multiple coins with different unknown probabilities?
○ What if we wanted priors for the α, β in the Beta distribution (hyperpriors)?
○ What if we had latent variables?

● Calculating the posterior can be mathematically intractable.



Background: Back to PP…

Instead of doing that… what if we “implement” the model as a data-generating 
program and use automatic tools to estimate the posterior?

Coin example as pseudocode:

Program generate_data(N, α, β):

p := Beta(α, β).sample()

For 0 ≤ i < N:
xi := Bernoulli(p).sample()

return x



What is Pyro?

Combines PP with Deep Learning (PyTorch as a backend).

Question: When would full Bayesian inference be useful in ML?



What is Pyro (nuts and bolts)?

1. Methods and context managers for implementing Bayesian models.
2. Tools for statistical inference, given a data-generating model function:

a. Stochastic Variational Inference (SVI)
b. Markov Chain Monte Carlo (MCMC)

3.  A lot of other useful tools that I won’t discuss today.



How does Pyro implement models?

Three main components:

1. pyro.sample samples a value with a given name (or “site”) from a dist.
a. A special “obs” keyword argument must be used to indicate observed variables.

2. pyro.param is used to declare a tunable parameter.
a. Stored in a global parameter store dict for future access.
b. Allows for constraints on parameter values (e.g., must be greater than 0).

3. pyro.plate is used for independently and identically distributed (iid) samples.
a. Think of it as replacing for-loops, like in the coin example.



Sample shape: the iid dimensions of the 
tensor (plate)

How does Pyro represent tensors?

https://ericmjl.github.io/blog/2019/5/29/reasoning-about-shapes-and-probability-distributions/

Event shape: the conditionally dependent 
dimensions of the tensor

Batch shape: the conditionally independent 
dimensions of the tensor

Always safe to assume dependence, but declaring 
independence when appropriate can make computations faster.



Inference methods: SVI

● Approximate posterior Pθ(Z|X) with a simpler distribution Qφ(Z)
○ Q is called the guide in Pyro.
○ Can be defined manually, or with an AutoGuide function.

● Use stochastic gradient descent on both θ and φ to move Q closer to P.

descent

https://matsen.fhcrc.org/general/2019/08/24/vbpi.html



Inference methods: SVI

● Approximate posterior Pθ(Z|X) with a simpler distribution Qφ(Z)
○ Q is called the guide in Pyro.
○ Can be defined manually, or with an AutoGuide function.

● Use stochastic gradient descent on both θ and φ to move Q closer to P.
● Uses a special loss function called the “evidence lower bound” (ELBO):



Inference methods: MCMC

● The general idea of MCMC is that you can create a Markov Chain of samples 
that will eventually converge to the posterior dist.

○ Start with an initial sample θ0.
○ Create a proposal by sampling θi from some simpler distribution Q(θi | θi-1)
○ Accept the proposal proportionally to the ratio of P(θi | X) to P(θi-1 | X)
○ Continue indefinitely

https://www.researchgate.net/publication/334001505_Adaptive_Markov_chain_Monte_C
arlo_algorithms_for_Bayesian_inference_recent_advances_and_comparative_study



Inference methods: MCMC

● The general idea of MCMC is that you can create a Markov Chain of samples 
that will eventually converge to the posterior dist.

○ Start with an initial sample θ0.
○ Create a proposal by sampling θi from some simpler distribution Q(θi | θi-1)
○ Accept the proposal proportionally to the ratio of P(θi | X) to P(θi-1 | X)
○ Continue indefinitely

● In practice, Pyro’s MCMC uses a more complex algorithm called NUTS.
○ Based on Hamiltonian Monte Carlo (HMC), which automatically computes proposal dist. Q.
○ Need only provide model function and other hyperparameters.



SVI vs MCMC

SVI

+ Faster
+ Scalable

- Biased estimator
- May get stuck in local optimum and 

not converge to true posterior

MCMC

+ Unbiased estimator
+ Guaranteed convergence with 

enough samples

- Slower
- Requires a large number of samples

Rule of thumb: MCMC when working with very small data and need best 
estimate possible; SVI if working with large(r) dataset.



MLE
θ* = argmax P(X|θ)

MAP
θ* = argmax P(X|θ) P(θ)

Bayesian Inference 
P(θ|X) = P(X|θ) P(θ) / P(X) 

Ordinary loss
ℒ = error(ŷ, y)

Loss with regularization
ℒ = error(ŷ, y) + λR(w)

??

Supplementary: connections between ML and statistics

● Maximum Likelihood Estimation (MLE):
○ Frequentist approach to finding a point estimate of optimal parameters
○ Corresponds to a basic loss function.

● Maximum A Posteriori Estimation (MAP):
○ Bayesian approach to point estimation that incorporates a prior
○ Corresponds to loss with regularization.

● The gap filled by Pyro is when one wants to perform full Bayesian inference.
○ I.e., compute posterior distribution rather than a point estimate.



Cross-entropy loss: ℒ = - Σ y log(ŷ) Logistic likelihood

Absolute error loss (L1): ℒ = |y - ŷ| Laplace likelihood

OLS loss (L2): ℒ = (y - ŷ)2 Gaussian likelihood

Lasso loss (OLS with L1 reg) Gaussian likelihood w/ Laplace prior

Ridge loss (OLS with L2 reg) Gaussian likelihood w/ Gaussian prior

Supplementary: connections between ML and statistics

● Common ML loss functions and the equivalent likelihood/prior distributions:

● Note: all probability distributions have a corresponding loss function, but not 
all loss functions correspond to a valid probability distribution!


