
CS193X:
Web Programming

Fundamentals
Spring 2017

Victoria Kirst
(vrk@stanford.edu)

Today's schedule

Today
- Squarespace Layout

- Single row/column flexbox
- vh / vw / box-sizing

Friday
- position
- Random helpful CSS
- Mobile layouts
- CSS wrap-up

Monday
- Intro to JavaScript

Announcements

Homework 1 deadline extended!
- Due Mon Apr 17 Wed Apr 19!
- Details here

Homework 2 will go out Wed Apr 19 as well.
See syllabus for adjusted schedule.

Victoria's Office Hours --> Friday
- Due to a meeting, my office hours will be Friday after

class this week instead of today.
Amy / Cindy's Office Hours canceled this afternoon

- Email if you want to meet me at 4 in my office

http://web.stanford.edu/class/cs193x/homework/1-listicle
http://web.stanford.edu/class/cs193x/syllabus/

Mistake on padding/margin

The shorthand for padding and margin actually go

clockwise, not counter-clockwise (which...makes more sense)

padding: 2px 4px 3px 1px; <- top|right|bottom|left

margin: 2px 4px 3px 1px; <- top|right|bottom|left

(Previous slides now fixed)

Font-related CSS review

Name Description

font-family Font face (mdn)

color Font color (and always font color) (mdn)

font-size Font size (mdn)

line-height Line height (mdn)

text-align Alignment of text (mdn)

More font-related CSS

Name Description

text-decoration Can set underline, line-through
(strikethrough) or none (e.g. to unset
underline on hyperlinks) (mdn)

text-transform Can change font case, i.e. uppercase,
lowercase, capitalize, none (mdn)

font-style Can set to italic or normal (e.g. to
unset italic on) (mdn)

font-weight Can set to bold or normal (e.g. to unset
bold on h1 - h6) (mdn)

letter-spacing Controls the space between letters (mdn)

https://developer.mozilla.org/en-US/docs/Web/CSS/text-decoration
https://developer.mozilla.org/en-US/docs/Web/CSS/text-transform
https://developer.mozilla.org/en-US/docs/Web/CSS/font-style
https://developer.mozilla.org/en-US/docs/Web/CSS/font-weight
https://developer.mozilla.org/en-US/docs/Web/CSS/letter-spacing

Flexbox

Review: Flexbox

How do we create this look? (Codepen)

https://codepen.io/bee-arcade/professor/d2fb97d66ebb1c9eb2cd417629ae8a15

Review: Flexbox

How do we create this look? (Codepen)

https://codepen.io/bee-arcade/professor/68a156199ba5a28d95c8d6833c174bf4/?editors=1100

Continuing where
we left off!

Goal

We were trying to create

a layout that looks sort

of like this:

Status

We broke up the layout

into a bunch of colored

boxes:

And we got kind of stuck

trying to position the

orange boxes.

Recall: block layouts

If #flex-container was not display: flex:

Then the span flex-items would not show up because span

elements are inline, which don't have a height and width

(Review block and inline!)

(Please make sure you completely understand why the

elements do not show up!)

Check out block vs inline guide

http://web.stanford.edu/class/cs193x/lectures/05/block-inline

What happens if the flex item is
an inline element?

???

Flex layouts

Why does this change when display: flex?

Why do inline elements suddenly seem to have height and width?

Flex: A different rendering
mode

- When you set a container to display: flex, the

direct children in that container are flex items and

follow a new set of rules.

- Flex items are not block or inline; they have different

rules for their height, width, and layout.

- The contents of a flex item follow the usual

block/inline rules, relative to the flex item's

boundary.

- The height and width of flex items are… complicated.

Follow along on CodePen

https://codepen.io/bee-arcade/professor/7e5b739787c2675560abbd333ac8cafb/

Flex item sizing

Flex basis

Flex items have an initial width*, which, by default is either:

- The content width, or

- The explicitly set width property of the element, or

- The explicitly set flex-basis property of the element

This initial width* of the flex item is called the flex basis.

*width in the case of rows; height in

the case of columns

Flex basis

Flex items have an initial width*, which, by default is either:

- The content width, or

- The explicitly set width property of the element, or

- The explicitly set flex-basis property of the element

This initial width* of the flex item is called the flex basis.

The explicit width* of a flex item is respected for all flex items,

regardless of whether the flex item is inline, block, or

inline-block.

*width in the case of rows; height in

the case of columns

Flex basis

If we unset the height and width, our flex items disappears,

because the flex basis is now the content size, which is empty:

flex-shrink

The width* of the flex item can automatically shrink smaller

than the flex basis via the flex-shrink property:

flex-shrink:

- If set to 1, the flex item shrinks itself as small as it can in

the space available.

- If set to 0, the flex item does not shrink.

Flex items have flex-shrink: 1 by default.

*width in the case of rows; height in

the case of columns

The flex items'

widths all shrink to

fit within the

container.

Setting flex-shrink: 0; undoes the shrinking behavior, and

the flex items do not shrink in any circumstance:

flex-grow

The width* of the flex item can automatically grow larger than

the flex basis via the flex-grow property:

flex-grow:

- If set to 1, the flex item grows itself as large as it can in the

space remaining.

- If set to 0, the flex-item does not grow.

Flex items have flex-grow: 0 by default.

*width in the case of rows; height in

the case of columns

flex-grow example

Let's unset the height and width of our flex items again:

flex-grow example

If we set flex-grow: 1, the flex items fill the empty space:

Flex item height**?!

Note that flex-grow

only controls width*.

So why does the

height** of the flex

items seem to "grow"

as well?

*width in the case of rows; height in

the case of columns

**height in the case of rows; width in

the case of columns

align-items: stretch;

The default value of

align-items is

stretch, which

means every flex item

grows vertically* to fill

the container by

default.

(This will not happen if the

height on the flex item is

set)

*vertically in the case of rows;

horizontally in the case of columns

align-items: stretch;

If we set another value for align-items, the flex items

disappear again because the height is now content height,

which is 0:

Flex layout recap

- If you set display: flex, the element is now a flex

container and its direct children are flex items.

- The items in a flex container will layout in a row or

column depending on the flex-direction of the

container.

Flex layout recap

- justify-contents distributes the items horizontally

for flex-direction: row, vertically for column

- align-items distributes the items vertically for

flex-direction: row, horizontally for column

Flex layout recap

For flex-direction: row:

- The flex basis is the initial width of a flex item
- This is either the explicitly set width, the explicitly set flex-basis,

or the content width

- The width of a flex item will shrink to fit the container if

flex-shrink is set to 1 (disabled if 0)

- The width of a flex item will grow to fit the remaining

space if flex-grow is set to 1 (disabled if 0)

Flex layout recap

For flex-direction: row:

- The height of a flex item is either:

- the explicitly set height on the item, or

- the content height on the item, or

- the height of the container if the container's

align-items: stretch;

Flex layout recap

For flex-direction: column:

- The flex basis is the initial height of a

flex item
- This is either the explicitly set height, the

explicitly set flex-basis, or the content

height

- The height of a flex item will shrink to

fit the container if flex-shrink is

set to 1 (disabled if 0)

- The height of a flex item will grow to

fit the remaining space if flex-grow

is set to 1 (disabled if 0)

Flex layout recap

For flex-direction: column:

- The width of a flex item is either:

- the explicitly set width on the item,

or

- the content width on the item,

or

- the width of the container if the

container's align-items:

stretch;

That's still just scratching the
surface of flex box...

...but we now know enough to
continue our layout!

Follow along on Codepen

http://codepen.io/bee-arcade/professor/18a1165c6b3d812eb226dfd078c7f6a8

Height and width
quirks:
vh, vw, box-sizing

Flexbox example

How do we make a layout that looks like this? (Codepen)

The header and footer

stay at the top and

bottom of the viewport.

(Live example)

https://codepen.io/bee-arcade/professor/2f97b2cdfc04949c2c73dda852f739d7?editors=1100
https://codepen.io/bee-arcade/live/eea60f1f8f8475b67c74da0dac6e9f93

height and width percentages

When width is defined as a percentage:

- width is specified as a percentage of the containing

block's width.

When height is defined as a percentage:

- height is specified as a percentage of the containing

block's height.

In other words, height and width are defined relative to

their parent element when defined as a percentage.

https://developer.mozilla.org/en-US/docs/Web/CSS/width#Percentage
https://developer.mozilla.org/en-US/docs/Web/CSS/height#Values

height and width percentages
H

TM
L

C
SS

OUTPUT

(Codepen)

http://codepen.io/bee-arcade/pen/ef74c6ec30807fa61a4f55cd05c27293?editors=1100

Viewport?

Browser vocabulary:

- viewport: the rectangle where the webpage shows up,

scrollable via a scrollbar

- chrome: all the UI that's not the webpage, i.e.

everything but the viewport

Viewport?

Browser vocabulary:

- viewport: the rectangle where the webpage shows up,

scrollable via a scrollbar

- chrome: all the UI that's not the webpage, i.e.

everything but the viewport

The
viewport

Viewport?

Browser vocabulary:

- viewport: the rectangle where the webpage shows up,

scrollable via a scrollbar

- chrome: all the UI that's not the webpage, i.e.

everything but the viewport

The chrome

vh and vw

You can define height and width in terms of the viewport

- Use units vh and vw to set height and width to the

percentage of the viewport's height and width,

respectively (mdn)

- 1vh = 1/100th of the viewport height

- 1vw = 1/100th of the viewport width

Example:

- height: 100vh;

- width: 100vw;

https://developer.mozilla.org/en-US/docs/Web/CSS/length#Viewport-percentage_lengths

Flexbox example, solved

(rest of the CSS)

H
TM

L
C

SS

(CodePen)

https://codepen.io/bee-arcade/pen/eea60f1f8f8475b67c74da0dac6e9f93?editors=0100
https://codepen.io/bee-arcade/pen/eea60f1f8f8475b67c74da0dac6e9f93?editors=0100

Aside: sizing

Q: What happens if we add a
border to #upper-half?

(rest of the css)

http://codepen.io/bee-arcade/pen/ef74c6ec30807fa61a4f55cd05c27293?editors=1100

(rest of the CSS)

??
?

http://codepen.io/bee-arcade/pen/32a4b9cada8d0d739a411daeccbd42fa?editors=1100

The box model defines CSS width and height properties

to refer to the element's content width and height:

CSS box model width and height

If you want to have width and height refer to the

element's border width and height, use box-sizing:

- box-sizing: border-box;

box-sizing

Note: Using border-box will include padding in the width and height as well.
Note: You cannot select padding-box or margin-box.

https://developer.mozilla.org/en-US/docs/Web/CSS/box-sizing

Fixed example

(rest of the CSS)

http://codepen.io/bee-arcade/pen/5a9d7822d4186e4c7cfb16a1cf6893aa?editors=1100

Before we finish
Squarespace...

Another rendering
mode: position

Next time!

