Multicast Community Group TPAC 2022, Vancouver

Jake Holland (Akamai), chair https://www.w3.org/community/multicast/

Health rules reminder

- Take a covid test each day before attending any in-person event
- Do not come to the meeting if your test is positive
- Masks:
 - must be worn at all times in all common spaces and meeting rooms
 - must cover the nose and mouth
 - can be removed only as necessary to consume food and beverages (Food forbidden in meeting rooms and only allowed in the dedicated space)
 - must be absolutely worn while speaking
- Find all the rules at: https://www.w3.org/2022/09/TPAC/health

W3C Expectations

- This group operates under <u>W3C Code of Ethics and Professional Conduct</u>
 - We're all passionate about improving the Web, but let's all keep the conversations cordial and professional.
- The group operates under the Community and Business Group Process
 - W3C seeks organizational licensing commitments under the W3C <u>Community Contributor License Agreement (CLA)</u>. When people request to participate without representing their organization's legal interests, W3C will in general approve those requests for this group with the following understanding: W3C will seek and expect an organizational commitment under the CLA starting with the individual's first request to make a contribution to a group Deliverable.

TPAC meeting tips

- To enter the speaker queue, either
 - 'Raise your hand' using the control in the Zoom interface
 - Or ask for queue using your Zoom mic.
 - Or ask for queue using the deck mics on site.
 - Or q+ on https://irc.w3.org/?channels=%23multicast
- Please mute if you are not actively speaking.
- Please use headphones when speaking to minimize echo.
- The first time you speak, please state your full name and affiliation.

Agenda

- Intro (5m)
 - Welcome, Agenda-bash
- Multicast Community Group (25m)
 - Mission, Goals, Motivation: 15m
 - Recent work: 10m
- Discussion (30m)
 - Questions, Comments, Feedback

Multicast CG

Mission:

Enable multicast IP transport for web traffic to efficiently solve scalability problems in networking and web operations.

https://w3c.github.io/multicast-cg/multicast-cg-charter.html

Goal: get browsers to receive multicast, maintaining web security requirements.

Motivation: Impact of Peaks

Normal traffic day vs.
Peak traffic day

Goodput of 100KB+ objects (Histograms each half-hour)

Motivation: Peak Traffic Days

- Peaks come from **popular content**
- Popular content = same bits to many people
 - Live sports
 - Popular VOD (Squid Game, Game of Thrones, etc.)
 - Popular Downloads (IOS, Patch Tuesday, Fortnite, Call of Duty)
- **Higher** actual traffic **demand** (not just shifting between services)
- Networks strained ~10-30x/year

Motivation: Peak Traffic Days

- Peaks come from popular content
- Popular content = same bits to many people
 - Live sports = mostly web traffic & smart tvs
 - Popular VOD (Squid Game, Game of Thrones, etc.)
 - Popular Downloads (IOS, Patch Tuesday, Fortnite, Call of Duty)
- More actual traffic demand (not just shifting between services)
- Networks strained ~10-30x/year

Motivation: Global Network Efficiency

- Climate Impact
 - Internet=3.7%* of global carbon footprint (2019 estimate)
 - 1% of total global footprint is internet video (300m tonnes)
 - ~15-25% addressable with multicast
 - (does not include broadcast in transition to IP)
 - 24m tonnes from video games (chiefly downloads)
 - Wide multicast ~4x better than stopping crypto proof-of-work
- Cost of delivery & services
 - Network capital costs driven by peak load
 - Power needs/provider costs scale with traffic volume
 - Lower costs + competition => lower price for users

^{* &}quot;Why your internet habits are not as clean as you think", 2020-03-05, BBC

(Extra Background Resources w/ Motivation)

- APNIC Blog Post
- IETF 111 Web Multicast Bar Bof (slides)
- IETF 112 secdispatch (slides)

Recent Proposal: Multicast Extensions for QUIC

- Protocol Specification
 <u>draft-jholland-quic-multicast</u>
- Security Model
 <u>draft-krose-multicast-security</u>
- Demo implementation in very early days:
 <u>aioquic fork</u>

QUIC Multicast: Basic Operation

- Source-Specific IP Multicast for some server --> client data
- Anchored on the unicast connection
 - Frames from multicast channels could equally have been sent unicast
 - No special restrictions on unicast connection
- Server-driven (with client consent)
 - Server MAY ask client to join channels (via extension frames in the draft)
 - Client MAY join as requested
- Client provides limits (for congestion control as in <u>RFC 8085</u>)
 - Aggregate Max Rate
 - Max Channel Count
- Client ACKs over unicast
 - per-channel packet number space
 - similar to multipath (w/multiple packet number spaces)

QUIC Multicast: Protocol Extensions

- Transport Parameters
 - declare multicast support + client initial limits
- New Extension Frames
 - Server -> Client
 - Channel lifetime & static properties: MC_ANNOUNCE, MC_RETIRE
 - Key rotation for encryption: MC_KEY
 - Requests of client's channel state: MC_JOIN, MC_LEAVE
 - Integrity guarantees: MC_INTEGRITY
 - Client -> Server
 - Report channel join status: MC_STATE
 - Report packets received: MC_ACK
 - Congestion control limits: MC_LIMITS

H3 Capabilities

- Response linked to request, so origin policy applies
- Server Push
 - unicast push-promises referring to streams sent on multicast channels
- Webtransport Server-initiated streams
 - unicast requesting stream id

Has unicast overhead, could be mitigated in future extensions (e.g. a stream id in response header instead of client's req stream id)

QUIC Multicast: Security Characteristics

- Symmetric Keys shared across many clients for multicast traffic
 - Content presumed discoverable for broadcast events
 - Decoupled from a destination IP
- IGMP/MLD (network join) = new information in local network
 - Key question: under what conditions is this safe?
 - Mitigation: disable in enhanced privacy mode
 - Threat model gap?
 - Literature on confidentiality focuses on private/personal info
- Integrity protection anchored in secure unicast connection