生物集団に見られる相転移現象と�超一様性に対する理論的研究�Theoretical Study of Phase Transitions and Hyperuniformity Observed in Biological Populations
Ayana Ezoe (Department of Physics, Chuo University, Tokyo)
Joint work with M. Katori (Chuo) and H. Nishimori (Meiji)
Physica A 643 (2024) 129798.
1
1 November 2024
修士論文中間発表会
Outline
2
3
Introductions
Switching of Cues by Foraging Ants
Foraging Ants
4
https://mas.kke.co.jp/
Edward O. Wilson and Bert Holldobler : `The Ants’, Belknap Press (1990), pp.265-279
Switching of Cues by Foraging Ants
Nishimori’s group experiments
5
Ogihara, Yamanaka, Akino, Izumi, Awazu, Nishimori : in `Mathematical Approaches to Biological Systems’, Springer (2015), pp.119-137
!
Ants perform not only
pheromone-mediated walks but also visual-cues-mediated walks.
Switching Particle Systems
6
Two-layer model (Switching interacting particle systems)
Floreani, Giardina, den Hollander, Nandan, Redig : J. Stat. Phys. 186 (2022) 33 (pp.45)
fast particles
7
Model
Stochastic Models for Foraging Path Selection
8
Two types of particles, two types of walks
Two-layer model | Our model |
slow particles | pheromone-mediated walks |
fast particles | visual-cues-mediated walks |
Stochastic Models for Foraging Path Selection
9
Two types of particles, two types of walks
Two-layer model | Our model |
slow particles | pheromone-mediated walks |
fast particles | visual-cues-mediated walks |
(When ants are moving from nest to food.)
Stochastic Models for Foraging Path Selection
10
Two types of particles, two types of walks
Two-layer model | Our model |
slow particles | pheromone-mediated walks |
fast particles | visual-cues-mediated walks |
(When ants are moving from food to nest.)
Stochastic Models for Foraging Path Selection
11
Stochastic Models for Foraging Path Selection
12
Pheromone field (Time evolution)
Stochastic Models for Foraging Path Selection
13
Pheromone-mediated walks
Stochastic Models for Foraging Path Selection
14
Visual-cues-mediated walks
Extreme Cases
15
Slow particle Fast particle
16
Numerical Analysis
17
Definition of Nearly Optimal Paths
18
19
20
21
22
The size dependence seems to be small.
Data collapse in statistical mechanics.
23
1/L-plots
Continuous Phase Transitions
24
The critical values of order parameters.
Evaluation of Critical Exponents
25
Evaluation of Critical Exponents
26
Summary
27
Future Problems
28
We want to know the following.
Other Research
29
超一様性に対する理論的研究
アルゼンチンの砂漠の衛星写真 by Google Maps
Other Research
30
超一様性に対する理論的研究
31
藪点過程
藪点過程
(massの重みつき)
massの重みなし 超一様でない
massの重みつき 超一様である
Other Research
Other Research
32
mass
大
中
小
超一様性に対する理論的研究
Other Research
33
超一様性に対する理論的研究
密度が等しい独立なポアソン分布から始め、得られた20個の定常分布のサンプル平均
※エラーバーは標準偏差を表す
Class Iの超一様性を持つ重みつきの点過程が生成できた。
S. Torquato, Hyperuniform states of matter, Physics Reports (2018) 745, 1-95
34
Thank you very much for your attention!
Supplement (Scaling argument)
35
Supplement (Scaling argument)
36