

StarDICE: Status on photometric calibration of standard stars at the milli-magnitude level

T. Souverin, M. Betoule, P. E. Blanc, S. Bongard, J. Cohen Tanugi, S. Dagoret Campagne, F. Feinstein, M. Ferrari, C. Juramy, L. Le Guillou, A. Le Van Suu, F. Hazenberg, M. Moniez, J. Neveu, E. Nuss, B. Plez, E. Sepulveda, K. Sommer, N. Regnault

Presented by Thierry Souverin

15/12/2023

I. Cosmological context

Cosmological context

For SNe Ia cosmology:

- The statistical uncertainty will decrease with the huge number of observations by LSST
- Photometric calibration will become the main uncertainty

3

Cosmological context

For SNe Ia cosmology:

- The statistical uncertainty will decrease with the huge number of observations by LSST
- Photometric calibration will become the main uncertainty

⇒ Every chromatic error in the telescope photometric calibration will distort the Hubble diagram and give different cosmologies

Cosmological context

Figure of Merit on (w0,wa) for a 10-yr LSST SNe Ia survey

Precision on the filter flux transmission

F. Hazenberg thesis

II. StarDICE experiment

Photometric calibration transfer

Photometric calibration transfer

Observatory site : Observatoire de Haute-Provence

StarDICE telescope

Response of the telescope calibrated :

- **R**_{tel,CBP} high resolution with the CBP (talk J. Neveu)
- **R**_{tel,DICE} low resolution monitoring with the StarDice artificial star

<u>Filterwheel</u>:

- **Grating** \rightarrow low resolution (R~150) spectrophotometry to fit $T_{atm}(\lambda)$
- **ugrizy filters** → broadband photometry calibration

Newton telescope ; D=40cm ; f=1.6m ; camera 1 Mpixel

Adjusting spectrum from CALSPEC

StarDICE

StarDICE is observing photometric standards

- Prior spectra given by telescope filter CALSPEC
- Prior knowledge of filter transmissions (CBP + DICE)
- Prior atmosphere simulation

Adjusting spectrum from CALSPEC

transmissions

StarDICE

StarDICE is observing photometric standards

- Prior spectra given by telescope filter CALSPEC
- Prior knowledge of filter transmissions (CBP + DICE)
- **Prior atmosphere** simulation

 \Rightarrow Theory/Measurements to adjust the spectrum for each filter

III. Preliminary photometry analysis on g191b2b

Status on g191b2b analysis

- ~2000 images by night
- 10 nights
- Total of ~20 000 images
- Observations in "ugrizy" filters + "grating"
- 726 stars studied in the field

Field simulation for g191b2b

Simulate the flux of stars in the StarDICE field with GAIA catalog

Theoretical flux formula

Simulation formula

$$S_{\star}(\lambda)
ightarrow { ext{GAIA}}$$
 catalog low resolution spectra

$$R_{
m SD}(\lambda)
ightarrow {
m Preliminary \, CBP \, measurements}$$

 $T_{\rm atm}(\lambda) \xrightarrow{\rightarrow} {
m Libradtran\,simulations\,with\,airmass,\,pressure\,and\,humidity}$ (ozone, aerosols and PWV are fixed)

Model

Difference between model and observation

$$\Delta m_{is} \,=\, \Delta Z P_i \,+\, \Delta m_s \,+\, \epsilon_{is}$$

Difference of zero point for each image

$$\Delta ZP_i\,=\,rac{\sum_srac{\left(\Delta m_{is}-\Delta m_s
ight)}{\sigma_{is}^2}}{\sum_srac{1}{\sigma_{is}^2}}$$

Difference of mean magnitude for each star

$$\Delta m_s \, = \, rac{\sum_i rac{\left(\Delta m_{is} - \Delta Z P_i
ight)}{\sigma_{is}^2}}{\sum_s rac{1}{\sigma_{is}^2}}$$

 $\mathcal{N}(0,\,\sigma_{is})$

Goal : zero point outside of the atmosphere

• ΔZP_i vs airmass

• ΔZP_i vs airmass

 $\Delta ZP_i = k imes \mathrm{airmass} + ZP_0$

ZP₀: estimation of the zero point outside the atmosphere

• ΔZP_i vs airmass : clean night

 $\Delta ZP_i = k imes \mathrm{airmass} + ZP_0$

ZP₀: estimation of the zero point outside the atmosphere

• ΔZP_i vs airmass : cloudy night

• ΔZP_i vs airmass : cloudy night

• *ZP*_o estimations

 $\Delta ZP_i = k imes \mathrm{airmass} + ZP_0$

ZP₀: estimation of the zero point outside the atmosphere

ZP estimation : RMS and MAD

ZP₀: estimation of the zero point outside the atmosphere

We aim for a 0.1% dispersion, corresponding to millimagnitude photometric calibration

Conclusion and improvements

- We are able to measure a zero point outside of the atmosphere for StarDICE filters
- The priors measurement can be improved (monitoring of StarDICE telescope with the artificial star, **fit** of the **atmosphere transmission** with the grating data and **Spectractor**
- The analysis can be improved with **forced photometry** (remove the bias of selection for faint stars)
- Infrared data to measure smaller gray extinction from clouds (see Kélian's talk)
- \Rightarrow More nights to come

https://docs.google.com/file/ d/1aA6a6GPbzXxqQoM8xR cYqnLURGNLSLzT/preview

Thank you for your attention

Variance modelization

• Star dispersion σ_{is}

When flux increase, the variance converge at <1% for every filters \Rightarrow inject σ_{is} in the model of ΔZP_{i}

• Δ ZPi dispersion per night

