
ثـــانـوية حـاج عـلال بـن بـيتور

السمركسبات السعسضوية

المركبات العضوية تحتوي دوما عنصر الفحم و الهيدروجين لكن تحتوي كذلك على عناصر أخرى كالأكسجين الأزوت الكبريت و الكلور . تتميز المركبات العضوية على احتوائها عنصر الكربون

مسميزاتسها

بنيتها الكميائية جزيئية تكون ذراتها مترابطة برواط تكافئية

قليلة الثباث الحراري لأنها تخرب بالتسخين وتعطي عنصر الكربون

الفحوم الهيدروجينية

هي مركبات عضوية تتكون جزيئاتها من عنصر الفحم و الهيدروجين فقط صيغتها **CxHy**

السلاسل الفحمية للفحوم الهيدروجينية

الفحوم الهيدروجينية ذات السلاسل الفحوم الهيدروجينية ذات السلاسل االحلقية المفتوحة تكون فيها ذرات الكربون مرتبطة فيما بينها مشكلة حلقة مشكلة سلسلة مفتوحة تكون

Jumili, acdlabs.com

خطية

متفرعة

C₃H₈

تذكير

صيغتة المفصلة

CH₃-CH₂-CH₃

صيغتة النصف المفصلة

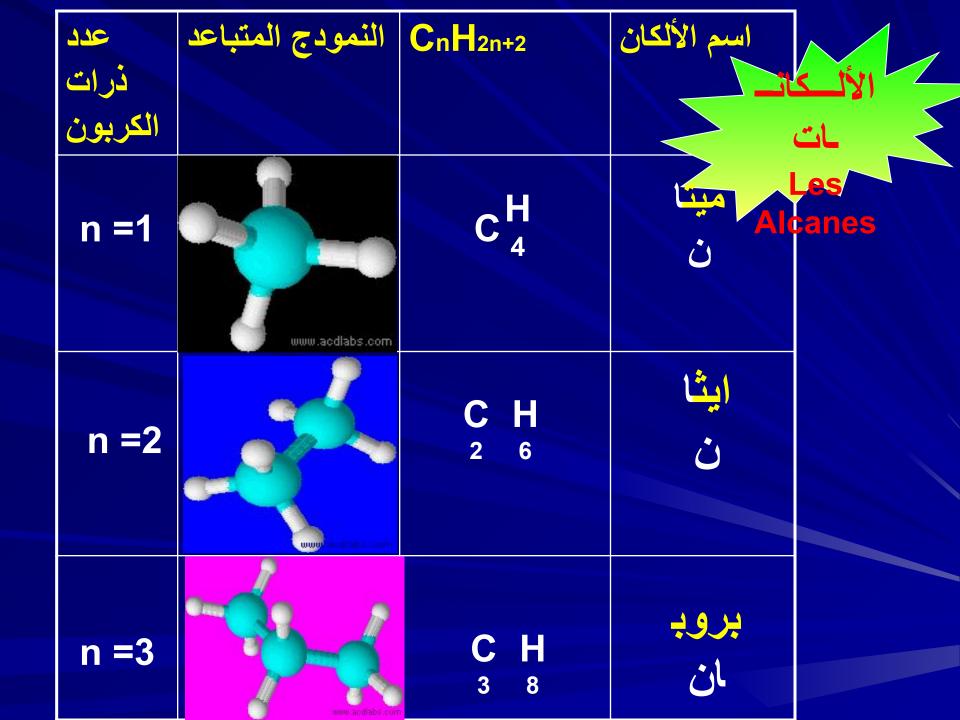
الألكات الألكات هي فحوم هيدروجينية مشبعة تكون جزيئاتها بشكل سلاسل مفتوحة تحوي روابط تكافئية بسيطة

بين ذرات الفحم و الهيدروجين

بين ذرات الفحم

C - H


سيغتها


 \mathbf{C} - \mathbf{C}

 C_nH_{2n+2}

C₄H₁₀

عدد ذرات الكربون	النمودج المتباعد	CnH2n+2	اسم الألكان
n =4	www.acdlabs.com	C H 1 0	بوتا
n =5	www.acdlabs.com	C H 5 12	بنتان
n =6	www.acdlabs.com	C H 6 14	Lusa

عدد ذرات الكربون	النمودج المتباعد	CnH2n+2	اسم الألكان
n =7	U.w.acdlabs.com	C H 7 16	هبتا
n =8	www.acdlabs.com	C H 8 18	أوكتا ن
n =9	WWW.acdlabs.com	C H 9 20	نونا

حذرألكيلي

ألكان

-C_nH_{2n+1}

 C_nH_{2n+2}

صيغتها العامة -C_nH_{2n}

+1

R

نرمز له

عدد ذرات الكربون	-CnH2n+1	اسم الجذر الالكلي
n =1	- H С з	ميثيل
n =2	- H C 5	ایثیل
n =3	C 7	بروبي
n =4	- H C 9	بوت <u>د</u> ل
n =5	- C H 5	بنتيل

الجذور الالكلية

تنزع اللاحقة

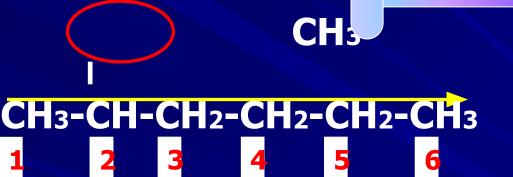
ان من الالكان المشتق منه و تستبدل باللاحقة يل

صىغتە

تسمية المركبات العضوية حسب توصيات <u>دات السدسي</u>TUPA

<u>تسمية الالكانات دات انسياسي</u>TUPA المتفرعة

> أكتب اسم المركب ذي الصيغة المنشورة التالية

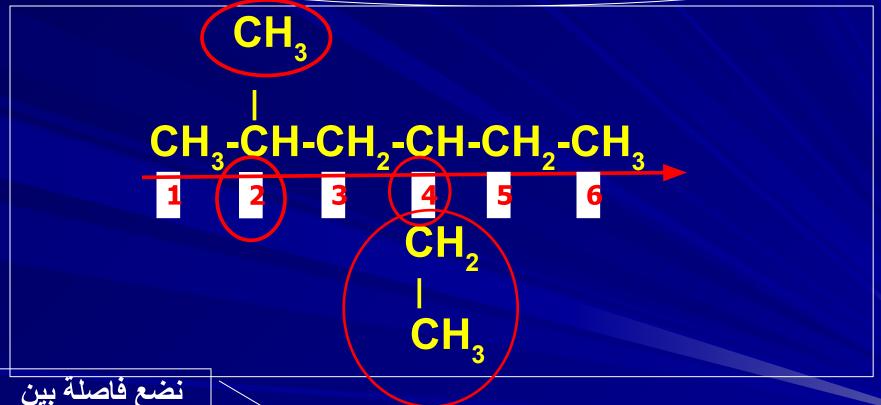

CH₃ | CH₃-CH-CH₂-CH₂-CH₃

نختار السلسلة الرئيسية 1

CH3-CH-CH2-CH2-CH3

لدينا 3 سلاسل تحتوي كل منها 6c, 3c, 6c و6c, 3c, 6c لهذا نختار التي تحتوي أكبر عدد من الكربون وأكبر عدد من الحذور الما أو

ولتكن السلسلة الصفراء لاحظ أن الجذر يوجد في الجانب الأيسر نرقم كربوناتها انطلاقا من اليسار


لاحظ ان الكربون الحامل للجذر يحمل رقم واسم ميتيل جذره ولاحظ ان عدد ذرات كربون السلسلة الرئيسية

اذن اسم المركب هو 2 ليه خط ليه خط

اسمها کسان 2-methylhexa ne

اذا كانت السلسلة تحتوى على جذرين او اكثر

يتم ترتيب أرقام و أسماء الجذور حسب الأسبقية الأبجدية اللاتنية

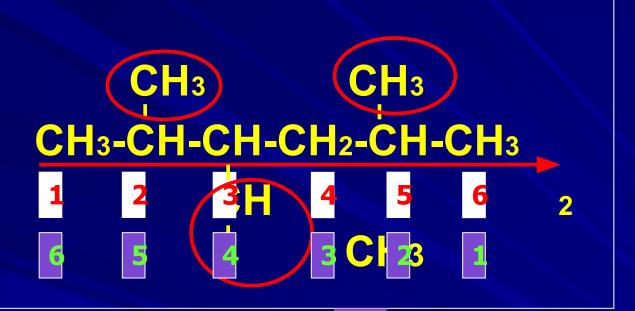
الجذور 4-فلابير الجذور الثيل 4-éthyle,2-méthylehexane

اسم المركب

اذا كانت السلسلة تحتوي جذرين متماثلين

1 (2H₃) 3 4 5 CH₃ - CH - CH-CH₂-CH₃ CH₃

ثم نكتب اسم الجذر مزود باللاحقة di التي تدل على مرات التكرار


نضع فاصلة بين أرقام الجذور المتماثلة

ننائي البنتان مثيل

2,3-dimthylepentan

e

لاحظ هذه الحالة

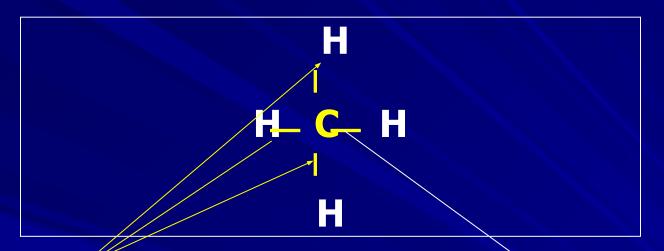
ایثیل 55,2 ثنائی مکسا 4-éthyle,2,5-diméthylehexane

ایثیل 5572 ثنائی هکس ایثیل diméthylehexane

11=

اذن التسمية المسجيدة هي التي يكون فيها مجمع عزارقام الجذور المسعودة

تسمية المركبات العضوية حسب توصيات علام 1UPAC


نختار أطول سلسلة تحتوي على أكبر عدد من الكربون و أكبر عدد من الجذور يشمل اسم المركب

اسكو السلسل ة الرئيسية

أرقامٌ ذرات الكربون الحاملة للجذور العم هذه

جنزيئ الميثان

CH₄

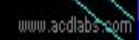
روابط ذرة الكربون موجهة كالمستقيمات الأربعة

روابط من نوع

تكون فيها ذرات الكربون مرتبطة فيما بينها مشكلة حلقة

الألسات Les Alcénes

هي فحوم هيدروجينية غير مشبعة تكون جزيئاتها . بشكل سلاسل مفتوحة تحوي رابطة مزدوجة واحدة



صيغد ا

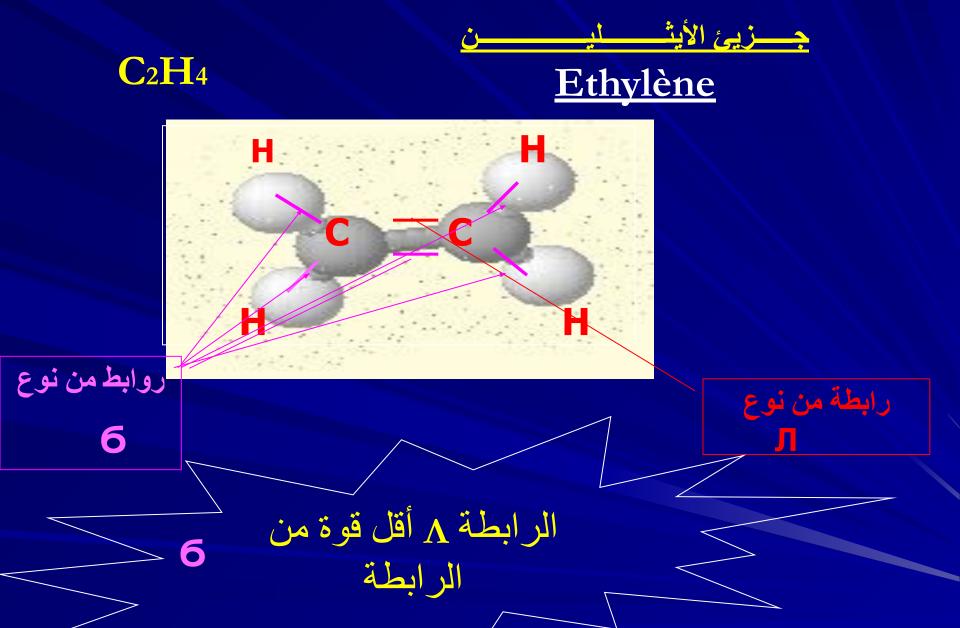
 C_nH_{2n}

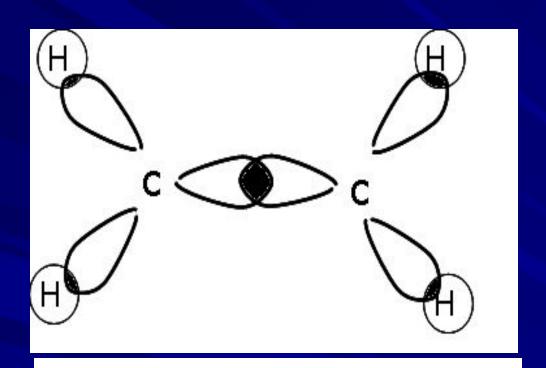
 C_3H_6

تسمية الألسانات وفق IUPAC

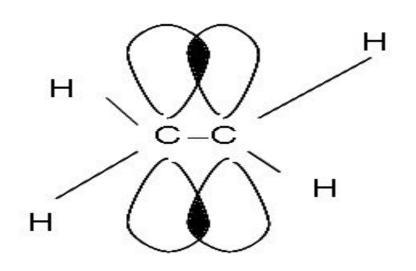
1 2 3 4 CH2-C-CH2-CH3

أكتب اسم المركب ذى الصيغة المنشورة التالية


نعين السلسلة الرئيسية التي3لاتوي على اكبر (1 عدد من ذرات


نرقم الكريون مع اجتوائها الرايطة الثنائبة (2 القريب للرابطة الثنائية.

3)نسبدل اللاحقة ane بخط صغير يليه رقم الرابطة الثنائية فخط صغير


يليه اللاحقة ène النواية الفام و اسماع الوزور 3 ونكتب في البداية الفام و اسماع الوزور -1-

المركب

الرابطة المضاعفة يرمز لها بخطين تموضع الرابطة و محطر فوق بعضهما البعض فوق بعضهما البعض

4 الألسينات Les Alcynes

هي فحوم هيدروجينية غير مشبعة ذات سلاسل مفتوحة تحوي روابط ثلاثية بين ذرتي كربون

 $C \equiv C$

صيغتها

 C_nH_{2n-2}

 C_3H_4

تسمية الألسينات وفق IUPAC

نعين السلسلة الرئيسية التي تحتوي على اكبر عدد من ذرات اكبر عدد من ذرات الكربون مع احتوائها الرابطة الثلاثية

نشير للرابطة الثلاثية باللاحق ة اين yne

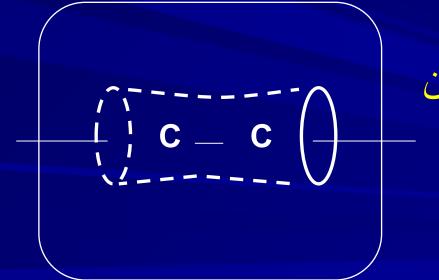
مثیل-**ه**کسـ -1-این

3-méthylhex-1-yne

 C_2H_2

جزيئ الأيستيلين

H-CEC-H


روابط من نوع **6** روابط من نوع

Л

الرابطة ٨ أقل قوة من الرابطة

الرابطة 6في جزيئ الايسستيلين احداها C-C و الأخرى C-H

السحابة الالكترونية ر في الايستيلين H

الكتابة الطوبولوجية للفحوم الهيدروجينية

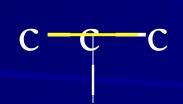
الهيكل الكربوني

بمأن المركبات العضوية تمتاز بحتوائها عنصري الكربون والهيدروجين فقد اتفق على تبسيط هذا التمثيل بالتركيز على الهيكل الكربوني للمركب العضوي وهو تمثيل لسلسة كربوناته

$$\begin{array}{ccc} \mathbf{C} - \mathbf{C} & \xrightarrow{\mathbf{g}} & \mathbf{C}_2 \mathbf{H} \\ \mathbf{g} & & 6 \end{array}$$

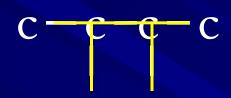
الهيكل الكربوني للمركب

$$\begin{array}{ccc}
\mathbf{C} - \mathbf{C} - & \mathbf{C}_3 \mathbf{H} \\
\mathbf{C} & \mathbf{g} & \mathbf{g}
\end{array}$$


الكتابة الطوبولوجية Ecriture topologique

هي تمثيل رمزي للهيكل الكربوني للجزيء

تمثل فيها الروابط الكربونية فقط دون كتابة عنصر الكربون.

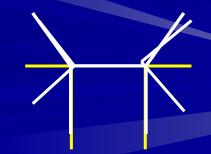

وهي عبارة عن خط متواصل منكسر مكون من قطع مستقيمة متساوية الطول

حيث نهاية قطعة او التقاء او التقاء قطعتين او ثلاثة توافق موقع ذرة الكربون

الكتابة الطبولوجية للهيكل الكربوني

____&

الكتابة الطبولوجية للهيكل الكربوني


ي

يوجد كتابتان طوبولوجيتان

متكافئتان بالتدوير

أو

كما توجد كتابتان طوبولوجياتان متكافئتان بالتشويه

أو

أعط الكتابة الطبولوجية للمركب التالي

$$CH_3 - CH_2 - CH = CH2$$

$$CH_3 - CH_2 - CH_3$$

المشتقات الهالوجينية

نحصل عليها باستبدال ذرة من السلسلة الكربونية بذرة أخرى

 C_nH_{2n+2}

 $C_nH_{2n+1}-X$

فيصبح

R

جذرألكيلي <u>ذرة هالوجين(عناصر</u> العمود السابع في الجدول (الدوري

صيغتها

R-X

تسمية المشتقات الهالوجينية

نطبق قاعدة تسمية الالكانات ونعتبر الهالوجين مكون للسلسلة

Br- CH₂-CH₃
bromoéthane

CH₃-I

Iodure de méthyle

بدلا منIodométhane

المركبات العضوية الأكسيجينية

1- المجموعة الوظيفية الكحولية

لاحظ

نستبدل ذرة هيدروجين في الــــسلسلة الــــكربونية للالـــكانات بمجموعة هيدروكسيل OH

 $\mathbf{C}_{n}\mathbf{H}_{2n+1}\mathbf{-OH}$

فيصبح

 C_nH_{2n+1} -OH

R-OH

__ جذرألكيلي

صيغته العامة

و هو

R

حيث

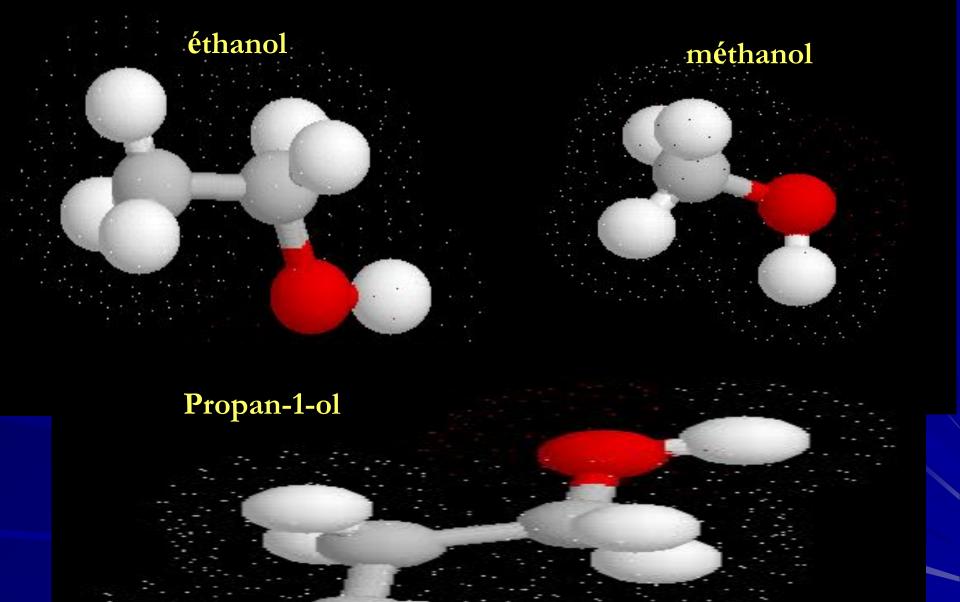
أصناف المحولا

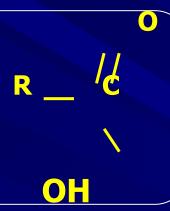
كحول ثـالثي	كحول ثانوي	كحول أولي
R ₁ - C -OH R ₂	R ₁ - CH-OH R ₂	R- CH ₂ -OH

تسمية الكحسولات

نعين السلسلة الكربونية التي تحتوي على الكربون الذي يحمل وظيفة ١٩٠٠ (هيدروكسيل)(الكربون الرظيفي)

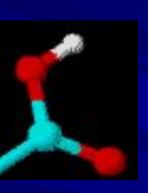
نبين موقع مجموعة الهيدروكسيل


مثي


4-méthypentane-1-ol

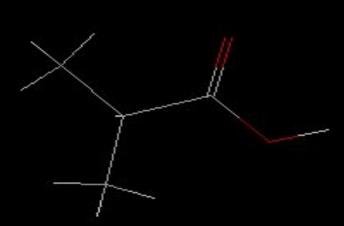
نرقم هذه السلسلة بحيث يأخد الكربون الذي يحمل الهيدروكسيل أقل رقم ممكن تسمية الكحسولات

-2- بوت -2-میثیل ان اول 3-méthylbutan-2-ol


اسم الكحول

3- المجموعة الحمضية الكربوكسيلية

تتميز بمجموعة



صيغتها العامة

CnH2n

СН3-СН(СН3)-СООН

Acide de métha
Acide de éthan
Acide
2-méthylproai

تسمية الأحماض الكربوكسيلية

تسمى من اسم الالكان المشتق مع اضافة oique ويسبق بكلمة acide

HCOOH

CH₃COOH CH₃-CH(CH₃) COOH

2- المجموعة الوظيفية الكربونيلية

تتميز بمجموعة

هي مجموعة تميز عائلة اللألدهيد و الكيوتونات

وعندما ترتبط هذه المجموعة بجذرين ألكيليليين نحصل على عائلة الكيوتونات

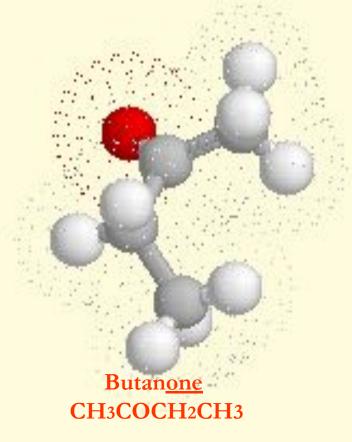
عندما ترتبط هذه المجموعة بجذر ألكيلي نحصل على الدهيد

صيغتها العامة CnH2n

صيغتها العامة

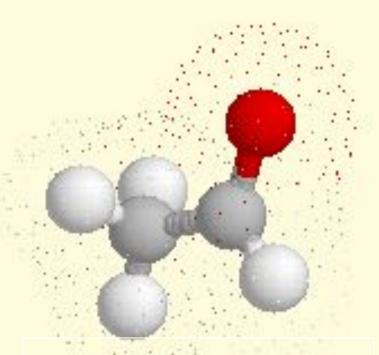
CnH2n

0 // R-C - R


R-CO-R

// R-C - H

R-COH


تسمية الكيتون

بضاف الى الألكان حرف (نون) none

تسمية الألـــدهيد

al (آل) حرف (آل)

CH₃CHO Etanal

المركبات العضوية الأزوتية

لأمينات

تتميز مجموعة الامينات بذرة الأزوت N

ناتجة من النشادر NH3 باستبدال كل ذرة هيدروجين أو أكثر بجذر الكيلي

أصناف الامينات

أميين تي

أمـــيــــــن ــــــانــــوي

أمين أوليي

R2 | | R3- N- R1

R₁- NH-R₂

R-NH2

تسمية الأمينات حسب UPAC

تسمى باضافة Amine الى اسم الألكان المشتق

تسمية الأمينات الأولية

Méthanamin e

CH₃-NH₂

تسمية الأمينات الثانوية

نعين الجذر الذي يحتوي على أكبر عدد من ذرات الكربون (1 الذي نختاره كأساس لتسمية الأمين ,أما الجذور الأخرى فتعتبر 2) نكتب اسم الجذر مسفيوتبدلق ف N- ليدل أنه مرتبط بذرة الازوت ثم اسم الأمين الموافق لأكبر جذر

CH₃ - NH - CH₂- CH₂-CH₃

N-méthylpropanamine

تسمية الأمينات الثالثية

نبدأ باسم الجذر الذي حرفه الأول من اسمه له ترتيب اول في الأبجدية اللاتينية

N, Ndiméthyléthanamine

(CH₃)₂NC₂H₅

SWF

