
Presented by Deepak Sood

Introduction to 
GenAI



whoami
Senior AI, Data and DevOps Architect @ OpsTree

- M.Tech IIITD CSE 2015-17 Batch

- Software Engineer

- DevOps Engineer

- Data Engineer

- Engineering Lead

- Architect

- Product + Project + Leadership + Strategy + Hiring

Hobbies

- Learning

- Problem Solving

- Note Taking

- https://deepaksood619.github.io/

- http://linkedin.com/in/deepaksood619



Who has heard of the following things - 

1. AI

2. ML

3. ChatGPT

4. Using ChatGPT ?

5. Mid Journey / Dall.E

6. LLM

7. Models - Llama, Mixtral

8. Transformers

9. Embeddings

10. Tools - LangChain

11. Vector DBs

Current Levels



1. What is GenAI

2. What problem does it solve

3. What was before it

4. What is coming up

Technicals

1. Prompt Engineering

2. LLMs

3. Embeddings

4. RAGs

5. Hands-on / Hackathon

Objective



Before AI/ML - Simple Rule-Based 
Programming

Rule-Based Systems: Programs that operate using a predefined set of rules (e.g., "if-else" 

statements) to make decisions or solve problems.

How it Works:

Fixed Logic: Developers write explicit rules that dictate the program's behavior in specific 

scenarios.

Deterministic: The outcome is predictable and the same every time for the same input.

Key Characteristics:

Static Rules: Cannot adapt or learn from new data.

Limited Complexity: Only works well for simple, clearly defined tasks.



Challenges with Rule-Based 
Programming

Scalability Issues:

Inflexibility: Adding new rules or changing existing ones requires manual updates, leading to complex 

and unmanageable code as the system grows.

Rule Explosion: Large numbers of rules can make the system cumbersome, hard to maintain, and 

prone to errors.

Lack of Adaptability:

No Learning: Cannot adapt to new situations or learn from past experiences.

Limited Scope: Inefficient for complex problems requiring pattern recognition, prediction, or 

handling ambiguity.



Artificial Intelligence (AI): Refers to machines simulating human intelligence processes.

Machine Learning (ML): A subset of AI where models learn patterns from data to make predictions or 

decisions without explicit programming.

Types:

Supervised Learning: Trained on labeled data.

Unsupervised Learning: Identifies patterns in unlabeled data.

Reinforcement Learning: Learns by interacting with the environment and receiving feedback.

Key Characteristics:

Data-Driven: Relies heavily on large datasets.

Task-Specific: Models are designed for specific tasks (e.g., image recognition, language translation).

Feature Engineering: Manual process of selecting relevant features from raw data for better model accuracy.

What are Traditional AI/ML Models?



Data Dependency:

Volume Requirement: Needs vast amounts of labeled data, which can be costly and time-consuming to 

gather.

Quality Issues: Performance is sensitive to data quality; biases and errors in data can degrade model 

accuracy.

Generalization Limitations:

Task-Specific: Struggles with adapting to new tasks or domains without significant retraining.

Scalability: Expanding the model’s scope often requires complex retraining processes.

Development Complexity:

Feature Engineering: Requires expert knowledge to handcraft features, making model development 

time-intensive.

Model Interpretability: Models can be black boxes, making it difficult to understand and explain decisions.

Challenges with Traditional AI/ML Models



Introduction 
to GenAI

Generative AI is revolutionizing the way we interact with 

technology. By leveraging advanced algorithms, we can create 

content that mimics human creativity.

● GenAI focuses on creating new content such as text, images, 

music or even code.

● History - From rule-based systems to advanced neural 

networks.

● Key breakthroughs and milestones - GANs and transformer 

models have significantly advanced GenAI.



A large language model is a type of artificial intelligence algorithm that applies 

neural network techniques with lots of parameters to process and understand 

human languages or text using self-supervised learning techniques. Tasks like text 

generation, machine translation, summary writing, image generation from texts, 

machine coding, chat-bots, or Conversational AI are applications of the Large 

Language Model. Examples of such LLM models are Chat GPT by open AI, Gemini by 

Google, Llama by Meta, etc.

LLMs



Working with LLMs - Prompt Engineering

Prompt Engineering: The process of designing and optimizing input prompts to effectively guide AI 

models, especially large language models (LLMs), in generating accurate, relevant, and contextually 

appropriate responses.

Key Concepts:

Prompt Structure: Crafting prompts that are clear, concise, and aligned with the desired outcome.

Iterative Refinement: Continuously tweaking and testing prompts to improve the quality and 

accuracy of AI-generated responses.

Task-Specific Prompts: Tailoring prompts to suit specific tasks like summarization, translation, or 

generating creative content.



Prompt Engineering - Examples

Example 1: Summarization

Prompt: "Summarize the following article in one paragraph: [Insert article text]."

Example 2: Question Answering

Prompt: "Based on the text provided, answer the following question: What are the key benefits 

of prompt engineering?"

Example 3: Creative Content Generation

Prompt: "Write a short story about a robot discovering emotions."



Challenges 
with LLM

● Hallucinations - Presenting false information when it does 

not have the answer.

● Presenting out-of-date or generic information when the 

user expects a specific, current response.

● Creating a response from non-authoritative sources.

● Creating inaccurate responses due to terminology 

confusion, wherein different training sources use the same 

terminology to talk about different things.



Solution - RAG
Retrieval-Augmented Generation (RAG) is the process of 

optimizing the output of a large language model, so it 

references an authoritative knowledge base outside of its 

training data sources before generating a response. RAG 

extends the already powerful capabilities of LLMs to 

specific domains or an organization's internal knowledge 

base, all without the need to retrain the model. It is a 

cost-effective approach to improving LLM output so it 

remains relevant, accurate, and useful in various 

contexts.



Contextual 

Relevance

More developer 

control

Cost-effective 

implementation

Reducing 

hallucinations

Current 

information

Benefits 
of RAG

Enhanced user trust



Practical 
Applications 
of RAG
RAG finds applications in various domains and 

industries, leveraging its ability to combine 

retrieval-based and generative techniques to enhance 

text generation and information retrieval.

01.

02.

03.

Question Answering Systems

RAG is particularly valuable in question-answering 

applications. It can retrieve and generate precise 

and contextually relevant answers to user queries, 

making it suitable for virtual assistants, FAQs, and 

expert systems.

Information Retrieval

RAG can enhance traditional information retrieval 

systems by providing more contextually relevant 

and coherent results. It improves the precision 

and recall of search engines, making it valuable in 

research and knowledge management.

Content Summarization

RAG can be employed to summarize lengthy 

documents, articles, or reports by selecting the 

most salient information and generating concise 

summaries. This is useful for content curation and 

information digestion.



Education Legal

Healthcare Finance

RAG can assist in creating educational 

materials by generating explanations, 

study guides, and tutorials. It ensures 

that the content is informative and 

aligned with the educational context.

In the legal domain, RAG can be 

applied to retrieve case law, statutes, 

and legal opinions. It helps lawyers and 

legal professionals access relevant 

legal information efficiently.

RAG models can generate financial 

reports, market summaries, and 

investment recommendations based 

on real-time data and financial 

databases, assisting analysts and 

investors.

RAG can assist healthcare 

professionals in decision-making by 

providing up-to-date medical 

information, research findings, and 

treatment guidelines. It aids in 

evidence-based medicine.



Embeddings
Embeddings are numerical representations of data (such as words, images, or documents) in a 

continuous vector space, where similar items are placed closer together.

Purpose: They capture the semantic meaning and relationships between items, enabling AI models to 

perform tasks like similarity matching, classification, and clustering.

How Embeddings Work:

Vectorization: Converts complex data into fixed-size vectors of numbers.

Semantic Mapping: Similar data points (e.g., words with similar meanings) are mapped to nearby points 

in the vector space.

Example: In language models, the words "king" and "queen" are close to each other in the embedding 

space, reflecting their related meanings.



Embeddings role in RAG
Information Retrieval: Embeddings are used to represent both queries and documents. When a query is 

made, the system retrieves the most relevant documents by comparing their embeddings.

Contextual Relevance: The retrieved documents provide context to the AI model, which uses this 

information to generate more accurate and contextually appropriate responses.

Process:

Embedding Generation: Both the user's query and the corpus of documents are converted into 

embeddings.

Similarity Matching: The system searches for documents with embeddings similar to the query.

Response Generation: The retrieved documents are used to enhance the model’s response generation.

Algorithms - Approximate Nearest Neighbor (ANN) Search, Cosine Similarity, Euclidean Distance



RAG Framework



Components of 
RAG

KnowledgeBase Retriever
The RAG retriever component is 

responsible for the initial step of 

retrieving relevant information from 

external knowledge sources. It uses 

retrieval techniques such as 

keyword-based search, document 

retrieval, or structured database 

queries to fetch pertinent data.

The RAG ranker component refines 

the retrieved information by 

assessing its relevance and 

importance. It assigns scores or 

ranks to the retrieved data points, 

helping prioritize the most relevant 

ones.

The RAG generator component 

is responsible for taking the 

retrieved and ranked 

information, along with the user's 

original query, and generating 

the final response or output.

Ranker Generator
- APIs, databases, or document 

repositories.

- Formats like files, database 

records, or long-form text.

- Embedding language models in a 

vector database



Vector DBs

● VertexAI

● Pinecone

● Milvus

● Chroma

● Even - Mongo and 

Postgres

LLM Models

● Gemini Pro and Flash

● Llama 3.1

● OpenAI

● Mixtral

Tools for 
Building a 

RAG
Frameworks

● VertexAI

● LangChain

● LlamaIndex

● Haystack

Text Embeddings

● MTEB - Massive Text 

Embeddings Benchmark

● FlagEmbedding

● SFR-Embedding-2_R

● AnglE



01.

02.

03.

Data Management

Data Management in RAG systems involves storing 

not just raw text but additional contextual 

information. This strategy enriches the context 

available to the model, enhancing its ability to 

generate relevant and accurate responses.

Embedding Optimization

Embedding Optimization focuses on refining data 

representations within the model’s latent space. 

This process improves the accuracy of these 

representations, ensuring they are more aligned 

with the intended meaning and context.

Advanced Retrieval Techniques

Advanced Retrieval Techniques in RAG include 

methods like recursive retrieval, hierarchical retrieval 

(Parent-child relationship), hypothetical questions 

indexed and summary indexed. These techniques are 

employed to enhance the model’s ability to access 

and utilize the most relevant information from vast 

data sets.

Best Practices 
for RAG 
Implementation



Balancing Retrieval and Generation

Striking the right balance between 

retrieval and generation is crucial. 

Over-relying on retrieval may lead to 

responses that lack creativity or 

context, while excessive generation 

may result in less factual or relevant 

answers.

Evaluation Metrics

Assessing the performance of RAG 

models can be complex. Traditional 

metrics may not fully capture the 

quality of responses, especially when 

factual accuracy and contextual 

relevance are critical.

Handling Diverse Query Types

RAG models need to be versatile 

enough to handle a wide range of 

query types, from straightforward 

factual questions to more complex, 

nuanced queries. Adapting the 

retrieval and generation components 

to suit this diversity can be 

challenging.

Scaling to Large Datasets

As knowledge bases and data 

sources continue to grow, RAG 

models must scale efficiently. 

Handling massive datasets without 

sacrificing response times and 

accuracy is a technical challenge.

Challenges 
and Future 

Directions of 
RAG



Final 
reflections
RAG is a game-changer for LLMs, empowering LLMs with 

access to external knowledge are transforming their 

capabilities. By leveraging powerful tools like Gemini and 

Vertex AI, developers and businesses can harness the 

potential of RAG to build intelligent and insightful AI 

solutions.



Thanks

https://deepaksood619.github.io
bit.ly/deepnotes

DO YOU HAVE ANY QUESTIONS?

http://linkedin.com/in/deepaksood619
https://bit.ly/deepak-link

https://deepaksood619.github.io
http://bit.ly/deepnotes
http://linkedin.com/in/deepaksood619
https://bit.ly/deepak-link


Tutorial

Prompt Engineering using Gemini
https://github.com/google-gemini/cookbook

https://bit.ly/gemcook

https://github.com/google-gemini/cookbook
https://bit.ly/gemcook


Prompt Engineering using Gemini
https://bit.ly/gemcook

1. Go to Google AI Studio.

2. Login with your Google account.

3. Create an API key.

4. Use a quickstart for Python, or call the REST API using curl.

https://github.com/google-gemini/cookbook/blob/main/quickstarts/

Prompting.ipynb

1. Run in Colab

https://bit.ly/gemcook
https://github.com/google-gemini/cookbook/blob/main/quickstarts/Prompting.ipynb
https://github.com/google-gemini/cookbook/blob/main/quickstarts/Prompting.ipynb


https://github.com/GoogleCloudPlatform/generative-ai/blob/main/gemini/qa-ops/

building_DIY_multimodal_qa_system_with_mRAG.ipynb

https://github.com/huggingface/cookbook/blob/main/notebooks/en/rag_with_hug

ging_face_gemma_mongodb.ipynb

RAG 
Walkthrough

https://github.com/GoogleCloudPlatform/generative-ai/blob/main/gemini/qa-ops/building_DIY_multimodal_qa_system_with_mRAG.ipynb
https://github.com/GoogleCloudPlatform/generative-ai/blob/main/gemini/qa-ops/building_DIY_multimodal_qa_system_with_mRAG.ipynb
https://github.com/huggingface/cookbook/blob/main/notebooks/en/rag_with_hugging_face_gemma_mongodb.ipynb
https://github.com/huggingface/cookbook/blob/main/notebooks/en/rag_with_hugging_face_gemma_mongodb.ipynb


Hackathon

https://deepaksood619.github.io/ai/llm/rag-hackathon-questions
https://bit.ly/raghack

https://deepaksood619.github.io/ai/llm/rag-hackathon-questions
https://bit.ly/raghack

