Steps in Calculating Mean
Dr. Anshul Singh Thapa
Introduction
Arithmetic mean
X = X1 + X2 + X3 +…+ XN
N
= ΣX
N
ARITHMETIC MEAN
ARITHMETIC MEAN FOR UNGROUPED DATA
ARITHMETIC MEAN FOR GROUPED DATA
DIRECT METHOD
ASSUMED MEAN METHOD
STEP DEVIATION METHOD
DISCRETE SERIES
CONTINUOUS SERIES
DIRECT METHOD
ASSUMED MEAN METHOD
STEP DEVIATION METHOD
DIRECT METHOD
STEP DEVIATION METHOD
How Arithmetic Mean is Calculated
X = ΣX
N
ARITHMETIC MEAN FOR UNGROUPED DATA – DIRECT METHOD
ARITHMETIC MEAN FOR UNGROUPED DATA – DIRECT METHOD
Employee | Monthly Income (Rs.) X |
1 | 1780 |
2 | 1760 |
3 | 1690 |
4 | 1750 |
5 | 1840 |
6 | 1920 |
7 | 1100 |
8 | 1810 |
9 | 1050 |
10 | 1950 |
ARITHMETIC MEAN FOR UNGROUPED DATA – DIRECT METHOD
Employee | Monthly Income (Rs.) X |
1 | 1780 |
2 | 1760 |
3 | 1690 |
4 | 1750 |
5 | 1840 |
6 | 1920 |
7 | 1100 |
8 | 1810 |
9 | 1050 |
10 | 1950 |
N = 10 | ΣX = 16,650 |
Step 1 - X= ΣX
N
Step 2 - ΣX = 16650, N=10
Step 3 - X = 16650 = 1665
10
Step 4 - X = 1665 Ans
ARITHMETIC MEAN FOR UNGROUPED DATA – ASSUMED MEAN METHOD
Employee | Income (X) |
1 | 1780 |
2 | 1760 |
3 | 1690 |
4 | 1750 |
5 | 1840 |
6 | 1920 |
7 | 1100 |
8 | 1810 |
9 | 1050 |
10 | 1950 |
ARITHMETIC MEAN FOR UNGROUPED DATA – ASSUMED MEAN METHOD
Employee | Income (X) |
1 | 1780 |
2 | 1760 |
3 | 1690 |
4 | 1750 |
5 | 1840 |
6 | 1920 |
7 | 1100 |
8 | 1810 |
9 | 1050 |
10 | 1950 |
N = 10 | |
ARITHMETIC MEAN FOR UNGROUPED DATA – ASSUMED MEAN METHOD
Employee | Income (X) | Deviation (D = X – A) (X - 1800) |
1 | 1780 | |
2 | 1760 | |
3 | 1690 | |
4 | 1750 | |
5 | 1840 | |
6 | 1920 | |
7 | 1100 | |
8 | 1810 | |
9 | 1050 | |
10 | 1950 | |
N = 10 | | |
ARITHMETIC MEAN FOR UNGROUPED DATA – ASSUMED MEAN METHOD
Employee | Income (X) | Deviation (D = X – A) (X - 1800) |
1 | 1780 | 1780 – 1800 = -20 |
2 | 1760 | 1760 – 1800 = -40 |
3 | 1690 | 1690 – 1800 = -110 |
4 | 1750 | 1750 – 1800 = -50 |
5 | 1840 | 1840 – 1800 = +40 |
6 | 1920 | 1920 – 1800 = +120 |
7 | 1100 | 1100 – 1800 = -700 |
8 | 1810 | 1810 – 1800 = +10 |
9 | 1050 | 1050 – 1800 = -750 |
10 | 1950 | 1950 – 1800 = +150 |
N = 10 | | |
ARITHMETIC MEAN FOR UNGROUPED DATA – ASSUMED MEAN METHOD
Employee | Income (X) | Deviation (D = X – A) (X - 1800) |
1 | 1780 | 1780 – 1800 = -20 |
2 | 1760 | 1760 – 1800 = -40 |
3 | 1690 | 1690 – 1800 = -110 |
4 | 1750 | 1750 – 1800 = -50 |
5 | 1840 | 1840 – 1800 = +40 |
6 | 1920 | 1920 – 1800 = +120 |
7 | 1100 | 1100 – 1800 = -700 |
8 | 1810 | 1810 – 1800 = +10 |
9 | 1050 | 1050 – 1800 = -750 |
10 | 1950 | 1950 – 1800 = +150 |
N = 10 | | Σd = -1350 |
Step 1 - X = A + (Σd)
N
Step 2 - A = 1800, Σd = - 1350, N = 10
Step 3 - X = 1800 – 1350 = 1800 – 135 =
10
Step 4 - X = 1665 Ans
ARITHMETIC MEAN FOR UNGROUPED DATA – STEP DEVIATION METHOD
Employee | Income (X) |
1 | 1780 |
2 | 1760 |
3 | 1690 |
4 | 1750 |
5 | 1840 |
6 | 1920 |
7 | 1100 |
8 | 1810 |
9 | 1050 |
10 | 1950 |
N = 10 | |
ARITHMETIC MEAN FOR UNGROUPED DATA – STEP DEVIATION METHOD
Employee | Income (X) | Deviation (D = X – A) (X - 1800) |
1 | 1780 | 1780 – 1800 = -20 |
2 | 1760 | 1760 – 1800 = -40 |
3 | 1690 | 1690 – 1800 = -110 |
4 | 1750 | 1750 – 1800 = -50 |
5 | 1840 | 1840 – 1800 = +40 |
6 | 1920 | 1920 – 1800 = +120 |
7 | 1100 | 1100 – 1800 = -700 |
8 | 1810 | 1810 – 1800 = +10 |
9 | 1050 | 1050 – 1800 = -750 |
10 | 1950 | 1950 – 1800 = +150 |
N = 10 | | |
ARITHMETIC MEAN FOR UNGROUPED DATA – STEP DEVIATION METHOD
Employee | Income (X) | Deviation (D = X – A) (X - 1800) | (d’ = X – A) C |
1 | 1780 | 1780 – 1800 = -20 | -20/ 10 = -2 |
2 | 1760 | 1760 – 1800 = -40 | -40/10 = -4 |
3 | 1690 | 1690 – 1800 = -110 | -110/10 = -11 |
4 | 1750 | 1750 – 1800 = -50 | -50/10 = -5 |
5 | 1840 | 1840 – 1800 = +40 | +40/10 = 4 |
6 | 1920 | 1920 – 1800 = +120 | +120/10 = 12 |
7 | 1100 | 1100 – 1800 = -700 | -700/10 = -70 |
8 | 1810 | 1810 – 1800 = +10 | +10/10 = 1 |
9 | 1050 | 1050 – 1800 = -750 | -750/ 10 = -75 |
10 | 1950 | 1950 – 1800 = +150 | +150/10 = 15 |
N = 10 | | | |
ARITHMETIC MEAN FOR UNGROUPED DATA – STEP DEVIATION METHOD
Employee | Income (X) | Deviation (D = X – A) (X - 1800) | (d’ = X – A) C |
1 | 1780 | 1780 – 1800 = -20 | -20/ 10 = -2 |
2 | 1760 | 1760 – 1800 = -40 | -40/10 = -4 |
3 | 1690 | 1690 – 1800 = -110 | -110/10 = -11 |
4 | 1750 | 1750 – 1800 = -50 | -50/10 = -5 |
5 | 1840 | 1840 – 1800 = +40 | +40/10 = 4 |
6 | 1920 | 1920 – 1800 = +120 | +120/10 = 12 |
7 | 1100 | 1100 – 1800 = -700 | -700/10 = -70 |
8 | 1810 | 1810 – 1800 = +10 | +10/10 = 1 |
9 | 1050 | 1050 – 1800 = -750 | -750/ 10 = -75 |
10 | 1950 | 1950 – 1800 = +150 | +150/10 = 15 |
N = 10 | | Σd = -1350 | Σd’ = -135 |
Step 1 - X = A + Σd’ x c
N
Step 2 - A = 1800, Σd’ = - 135, N = 10, c = 10
Step 3 - X = 1800 – 135 x 10 = 1800 – 135 =
10
Step 4 - X = 1665 Ans