Ticket #324 Reading

Clarify MPI ERRORS ARE FATAL scope of abort
https://svn.mpi-forum.org/trac/mpi-forum-web/tic
ket/324

Fault Tolerance Working Group
June 3, 2015


https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/324
https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/324

Background

e Section 8.3 is imprecise about where
MPI ERRORS ARE FATAL is applied.

MPI_ERRORS_ARE_FATAL The handler, when called, causes the program to abort on all
executing processes. This has the same effect as if MPI_ABORT was called by the
process that invoked the handler.

e The first and second sentences are
contradictory (MPI ABORT accepts a
communicator argument)

e [he second sentence is more permissive for FT
implementations and good software
engineering.




Motivation

e Allows the application to clean itself up after an

error.
o Flush state to disk, close files, etc.

e Step O for any FT solution

o Could be part of ULFM, but this is more generic than that
solution.

e Allows very basic FT implementations and

applications

o Without these changes, if any communicator uses
MPI ERRORS ARE FATAIL, all use it.



Text Changes
Section 2.8

e Clarify that a generic fatal error is the same as
calling MPI ABORT (MPI COMM SELF)

Another subtle issue arises because of the nature of asynchronous communications: MPI
calls may initiate operations that continue asynchronously after the call returned. Thus, the
operation may return with a code indicating successful completion, yet later cause an error
exception to be raised. If there is a subsequent call that relates to the same operation (e.g.,
a call that verifies that an asynchronous operation has completed) then the error argument
associated with this call will be used to indicate the nature of the error. In a few cases,
the error may occur after all calls that relate to the operation have completed, so that no
error value can be used to indicate the nature of the error (e.g., an error on the receiver
in a send with the ready mode). Such an error must be treated as fatal, since information
cannot be returned for the user to recover from it. When an error is treated as fatal [in this
situation|[NEW], then it has the same effect as calling MPI_ABORT on MPI_COMM_SELF.




Text Changes
Section 3.7.3

e Definition of MPT REQUEST FREE

e Continue clarification from previous change

Advice to users. Once a request is freed by a call to MPI_REQUEST_FREE, it is
not possible to check for the successful completion of the associated communication
with calls to MPI_WAIT or MPI_TEST. Also, if an error occurs subsequently during
the communication, an error code cannot be returned to the user — such an error
must be treated as [fatal|fatal, which has the same effect as calling MPI_ABORT on
MPI_COMM_SELF. An active receive request should never be freed as the receiver will
have no way to verify that the receive has completed and the receive buffer can be
reused. (End of advice to users.)




Text Changes
Section 8.3

e Definition of MPT ERRORS ARE FATAL

e Define the scope of abort for error handler to just
the current communicator

MPI_ERRORS_ARE_FATAL The handler, when called, causes the program to attempt to
abort on all executing processes in the associated communication object. This has
the same effect as if MPI_ABORT was called by the process that invoked the handler
in the underlying communicator.

Definition of MPI_ABORT

This routine makes a “best attempt” to abort all tasks in the group of comm. This
function does not require that the invoking environment take any action with the error
code. However, a Unix or POSIX environment should handle this as a return errorcode
from the main program.




Text Changes
Section 8.7

e Definition of MPI_ABORT

e Add advice to say that implementations should
provide a graceful way of dealing with aborted
processes.

Rationale. The communicator argument is provided to allow for future extensions of
MPI to environments with, for example, dynamic process management. In particular,
it allows but does not require an MP| implementation to abort a subset of
MPI_COMM_WORLD. (End of rationale.)

Advice to implementors. When aborting a subset of processes, such an implemen-
tation should also be able to provide correct error handling for a case where a com-
municator contains both aborted and non-aborted processes.[NEW] (End of advice to

implementors.)




Previous Objections

e This prevents the application from handling an

exception safely! (MPI SEND Kkills apps)

o If you want to be safe, set your error handler to
MPI ERRORS RETURN on communicators that you want to
keep alive.

o Completing MPTI SEND does not imply that the message has
been received (or that the receiver is alive).

e This has a large burden on implementations!

o This is just as optional as FT has always been. Feel free to
abort.

It may not be possible for an MP| implementation to abort only the processes repre-
sented by comm if this is a subset of the processes. In this case, the MP| implementation
should attempt to abort all the connected processes but should not abort any unconnected
processes. If no processes were spawned, accepted, or connected then this has the effect of
aborting all the processes associated with MPI_COMM_WORLD.




Burden on Implementations

e No new implementation required
o Implementations are still free to abort on errors

e Implementations that choose to do better now have
clear instructions



Implementation

e MPICH

o Needs a patch to abort a subset instead of
MPI_COMM_WORLD
m |n the review process

o Other infrastructure has been present since v3.0

e Open MPI

o Runtime doesn’t support continuing with a subset of processes



Backup Slides



Why MPIl_Send can succeed when
the receiver is dead

Returning from MPIl_Send does not imply that the
message is received, only buffered somewhere.

3.4 Communication Modes

The send call described in Section 3.2.1 is blocking: it does not return until the message

data and envelope have been safely stored away so that the sender is free to modify the

send buffer. The message might be copied directly into the matching receive buffer, or it
might be copied into a temporary system buffer.

Message buffering decouples the send and receive operations. A blocking send can com-
plete as soon as the message was buffered, even if no matching receive has been executed by
the receiver. On the other hand, message buffering can be expensive, as it entails additional
memory-to-memory copying, and it requires the allocation of memory for buffering. MPI
offers the choice of several communication modes that allow one to control the choice of the
communication protocol.




