A Statistical Exploration of Riemann Zeros using SAGE

by Lucian M. Ionescu (for UI Number Theory Conference 2015)

Riemann Hypothesis & Zeros

- <u>Recall</u>: Riemann Zeta Function & its zeros $r_n = \frac{1}{2} + i t_n$, $t_1 = 14.1, \dots$ etc. Riemann Hypothesis: Why " $\frac{1}{2}$ "?
- Facts

1) Riemann Spectrum {t_n} has low entropy (O. Shanker); 2) {Yp}={t_n log(p)/(2π) mod Z} accumulates around $\frac{1}{2}$ (Rademacher, Ford & Zaharescu)

3) R-Spec can be recovered from a cofinal subset (R.P. Marco: <u>Statistics of Riemann Zeros</u>).

- <u>Claim</u>: R-Spec has an alg. structure dual to POSet of prime numbers (see LMI: <u>A Partial Order on Prime Numbers</u>)

Main idea: study using Statistics!

- Explore R-Spec {t_n} using *statistical tools* ...
- Ford & Zaharescu diagrams (p.4): distribution of Yp shows an abundance of Riemann zeros such that Yp are close to $\frac{1}{2}$.
- <u>Histograms of Riemann zeros using SAGE</u> (Xp=exp(iYp)):
 - 1) <u>N=200000 zeros & resolution 1000;</u>
 - 2) <u>N=500000 zeros & resolution 2000;</u>
 - 3) Other diagrams (p=5 & n=3) & big primes

(Big primes seem to have flat distributions ...)

- The **basic histogram** for scaling factor **log(p)** <u>implies</u> the shape and properties of the other for log(p)*k/q

Landau Formula & Average

- Landau formula (equivalent to Riemann-Mangoldt exact formula):

Sum
$$_{0 < \text{Im}(r) < T} x^r = -T/(2\pi) \text{Lambda}(x) + O(\log(T)),$$

suggests Rademacher's remark that <u>Xp concentrate about -1</u>.

- Landau's Average 1/T Sum _{0<Im(r)<T} p^r essentially yields log(p) in terms of Riemann zeros (<u>SAGE exploration</u>):

- Conj.: Landau's formula leads to Ford & Zaharescu distributions for Xp.

Primes & Riemann Zeros Duality

- **Riemann-Mangoldt exact formula** (interpreted as Poisson summation / trace formula) => <u>primes & Riemann zeros duality</u>.
- Distributional duality (see <u>Mazur & Stein: Primes & RH</u>):

1) Primes -> Zeros (p.111) & <u>SAGE worksheet;</u>

2) Zeros -> Primes (p. 119) & <u>SAGE worksheet</u>.

- <u>Mazur & Stein</u> state: *Riemann Spectrum is the key to primes and their deeper structure* ... Is it? OR ...
- LMI: The **POSet structure of PRIMES** is the *key* to the **structure of the Riemann Spectrum**.

Questions & Research suggestions

- A few questions seem a good start studying the above facts:
- 1) Can one separate the "p-sector" of R-Spec in the duality equation yielding Dirac distribution of log(p)?
- 2) Is this "p-sector" the dominant part in Landau's Average?
- 3) Is (2) the reason for the accumulation around $\frac{1}{2}$ observed by Rademacher (exponential approx -1)?
- 4) Is this related to Gauss sums via +/-1 $p^{\frac{1}{2}}$ =Gauss Sum? Is R-Spec somehow generated by Weil zeros? (R & Qp: Adeles unite reals & p-adic numbers primes & p=infinity).
- ... and a statistical exploration is an easy start.

Riemann Spectrum as a Random Variable on the circle: Xp=p^{it(n)}

- The Riemann spectrum $\{t(n)\}_{n \text{ in } N}$ (imaginary parts of Riemann zeros $r_n = \frac{1}{2} + i t_n$) can be investigated as a **statistical ensemble** (Xp is algebraically better suited for study).
- For averages, correlations and convergence purposes, as in Landau's formula yielding log(p), a large sample is needed, e.g. N=100000.
- To identify an algebraic structure behind them, smaller N-samples seem appropriate, e.g. N=1000: such samples exhibit non-trivial correlations between Xp & Xq; is this when p & q are correlated, i.e. gcd(p-1,q-1)<>1?

RV Xp: Mean, Deviations & Correlations

- Mean & Correlations of Riemann frequencies as "Random Variables" (basic rational/adelic characters r^{it}):

 $Yp=\{t_n \log(p)/2pi \mod 1\}$ or $Xp=p^{it(n)}$

- 1) <u>Mean of Xp plots</u> (plotting X_p=p^{it(n)}, not Yp i.e. "mod 1");
- 2) <u>Deviations of Xp</u> (StdDev(Xp) for k^{th} prime -> 1);
- 3) Correlations between Xp & Xq: <u>High Corr.</u>, <u>Pdf2</u>
 - <u>Resonances co(Xp,Xq) & symmetries of primes gcd(p-1,q-1)</u>
 - Using a small sample of 1000 Xq's shows resonances.
- ... other ideas to explore?

Some observations from the correlations of a fixed Xp with Xq's

- There is a "main resonance" around p, y = 433 there is a sharp peak at q=431, and lower resonances around it. This is a manifestation of "continuity" with respect to the variable q.
- But there are lower resonances
- ("harmonics"), which need to be explained;

for ex. p=

"Harmonics" of X₅₆₉

With the main peak out of the picture, we see the lower "modes" ("Fourier harmonics"): q=3, 5, 71, 113, 191, 283.

At 521 & 541 the correlation increases towards the peak.

Symmetry Structure of Fp & Fq's

- The corresponding "toroidal structure" of F_p^{x} (multiplicative characters) corresponds to the factorization of p-1 & q-1:

p=569:	p-1= Aut _{Ab} (Z/pZ,+) =2 ³ . 71
q=3:	q-1=2	
q=5:	q-1=2 ²	<u>No</u>
q= 71 :	q-1=2.5.7	yie
q=113:	q-1=2 ³ .7	
q=191:	q-1=2.5.19	

q=283: q-1=2.3.47

<u>Note</u>: F_{71} symmetry cycle of Fp yields a correlation with X_{71} .

37 cycle of F_{593} & X_{37} resonance of X_{593}

- But why also at

q=19, q*=(q-1)/2=3², q=197, q*=2.7²

and at q=199, q*=3².11 ?

- For 19 & 37 by continuity? but NOT at q=17, q*= 2^3 ! ... there should be an *additional reason* ... and for 197 & 199 by continuity and ?? ... Maybe 2^{nd} level of structure (Aut(Aut(Fp)): $37-1=2^2.3^2$, and 3^2 gives a resonance for q=199, and 197 happens to be "close" to 199 (continuity) ... (we are in a "pre-Keplerian phase" ... no "laws" yet ...)

X₇₄₃, p*=7.53 & 53 cycle of 107*=53

N=1000 is "blurring" the data, and correlations only approximate some coefficients of algebraic relations between Xp's & Xq's ...).

Other interesting pairs (p,q) p=787, p*=3.131, resonance at q=131 p=809 with resonance at q=101|p* p=863 w. peak at 431|863*=431 ...

... Time to "conjecture something" :) [Keplerian phase]

Conjecture & Research ideas

Let p, q be odd primes. If q|p* then c(Xp, Yq) is "high" (to be refined ...)

<u>Goal</u>: study how the *Riemann characters* q^{it} correlate non-trivially with the *symmetries* Fp^x of *finite strings* (Z/pZ,+):

 $Aut_{Ab}(Z/pZ,+) <-> q^{it}, t in R-Spec.$

Further Statistics Study: suggestions

- Cluster analysis ...
 - <u>Centroid based clustering</u>
 - <u>SAGE plot of RV Xp</u> (see averages plots)

... the pots are similar, so cluster analysis of Xp data might be useful.

- You (statisticians) name it!

Exploring POSet P & R-Spec duality

- SAGE investigation of correlations between the "random variables" Xp & the symmetry content of the *finite strings* Fp:

$$F_p^{x} \rightarrow Aut_{Ab}(Z/pZ,+)$$

corresponding to the factorization of p-1:

- 1) Plotting correlation coefficients
- 2) ... and prime correlations.

(... no definite conclusions yet ...)

Conclusions and Questions

- **Riemann zeros** have an **algebraic structure:** the *Riemann characters* & *symmetries of finite fields* are correlated!

- One may **use Statistical Tools** to explore the Riemann spectrum and "extract" more information (enriching the relevant R-zeros, relative to a prime p etc.).

- Is there a **p-sector of the Riemann spectrum**? Can one recovering log(p) from a "minimal" subset?

(to be continued ... by some "Newton" :)

Thank you!

Bibliography (short)

1) K. Ford and Zaharescu, <u>On the distribution of imaginary</u> parts of Riemann zeros

2) L. M. Ionescu, <u>A partial Order on the set of primes</u>, <u>http://arxiv.org/abs/1407.6659</u>

3) R. P. Marco, Statistics of Riemann zeros, http://arxiv.org/abs/1112.0346

4) L. M. Ionescu, <u>A study of the Riemann zeros</u>, NSF GP, 2014, and references therein.

5) O. Shanker, Entropy of Riemann zeros

Notes (2016)

- Riemann "angular" frequencies: Xp={t/(2pi)}

R. zeros = $\frac{1}{2}$ +2 π i ν

[periods = 1/Nu etc.]