Compute Shader cloth

github.com/likangning93/GPU _cloth

Motivation

Animators need to see cloth motion quickly to make edits and control decisions.

Academics: “It's physically accurate!” Artists: “But what if | want her dress to swish like
this instead? or like this? or like this? or like ...”

Disney Pixar, Inside Out:
https://commons.wikimedia.org/wiki/File:Cloth_Simulation.gif https://media.giphy.com/media/uT2g55XgavoRy/giphy.gif

What | did:

convertor from obj -> simulation internal format
- including internal constraint generation

basic rendering with a geometry shader
simulation solver - caveats and details to follow
performance analysis tools

How close did | get?

There’s still a lot of work to be done... but it's a start!

Disney Pixar, Inside Out:
https://media.giphy.com/media/uT2g55XqavoRy/giphy.gif

Cloth Simulation

- cloth is often simulated as a mass-spring system

- basically, every step involves moving a bunch of points according to forces
and maintaining distance relationships to neighbors

MM~ Stretch
M~ Shear
—snmn— Bend

Position Based Dynamics - Overview

In each timestep:

1) apply external forces (gravity) and damping to velocities
2) compute predicted positions

3) correct predictions with internal constraints
a) the “springs” in the mass spring system
b) solved N times -> more stable as N increases

4) generate and resolve collision constraints
5) set start positions and velocities for the next timestep

details and math here:
http://matthias-mueller-fischer.ch/publications/posBasedDyn.pdf

http://matthias-mueller-fischer.ch/publications/posBasedDyn.pdf

Position Based Dynamics - On the GPU?

In one timestep:

1) apply external forces (gravity) and damping to velocities - parallelize by vertex
2) compute predicted positions - parallelize by vertex

3) correct predictions with internal constraints - parallelize by constraint
a) the “springs” in the mass spring system
b) solved N times -> more stable as N increases

4) collision constraints - at most 1 per vertex, so parallelize by vertex
5) set start positions and velocities for the next timestep - by vertex

So basically the simulated cloth needs two types of data in buffers:

- vertex info (velocity, position, mass)
- constraint info (“these two vertices shouldn’t separate by more than x”)

Caveats and Details: how does SSBO data work™!

- SSBO: shader storage buffer object

- like a more generalized version of a VBO

- compute shaders expect data to be transferred as vec4s - transfer positions
as vec3s and you get something like this instead of this:

Caveats and Details: Constraints

- avertex’s position is corrected by constraints, which
in turn are based on its neighboring vertices
- each vertex may have up to 8 constraints!

- how to parallelize without race conditions?
- atomics? OpenGL compute only offers atomics for ints!

- solution: ssbof7] ssbo[0] gsﬂo[1]
- build multiple buffers of non-conflicting constraints

- evaluate constraint sets in separate passes
ssbo[6] 'ssbo[2]

ssba5] ssl?o[4] 3380[3]

Caveats and Details: incoherent memory, tragedy

- Compute Shaders operate on “incoherent” memory

- so compute shader invocation B might not wait for a previous invocation A to
finish up with data before starting

- 3-week long bug: with only gravitational influence, my cloth did this:

- solution: gIMemoryBarrier

- prevents access to A's memory
- until A is done with it

- PBD’s stability: even before memory barriers it kind of worked!

Caveats and Details: incoherent memory, tragedy

How did | find out about this?

- ran simulation with debug code between shader calls: problem disappeared!

- ran simulation on a machine with a slower CPU: problem disappeared!

- finally read up on the OpenGL compute memory model:
https://www.opengl.org/wiki/Memory Model

https://www.opengl.org/wiki/Memory_Model

Performance: Analysis Overview

- data collected using OpenGL Timer Queries on specific stages

- internal constraints stage
- collision detection stage (naive detection)
- collision resolution stage

- technique: http://www.lighthouse3d.com/tutorials/opengl-timer-query/
- varied:
- Cloth size

- Rigidbody collider size
- compute shader work group size

y 0], GL_TIMESTAMP);

) » GL_TIMESTAMP);

yID[®], GL_QUERY_RESULT, &startTime)
)[1], GL_QUERY_RESULT, &sto|

http://www.lighthouse3d.com/tutorials/opengl-timer-query/

Performance: varying cloth size and collider size

varying cloth vertex count (386 vertex collider,
workgroup size 32, averaged over 600 frames)

varying collider vertex count (256 vertex cloth,
workgroup size 32, averaged over 600 frames)

16000 -
4000 [resolve collisions re;olve collisions
(microseconds) (microseconds)
B generate I ocnerate
i collisions (@ 12000 collisions (
Q AR mictoseconds) & microseconds)
§ I project % B project
o copstraits (d “ constraints (
8 2000 mARRED § 8000 microseconds)
8 g
@ o
g £ 4000
——Y
0 98 vertices 386 vertices 1538 vertices 6156 vertices

121 256

529 1296

cloth vertex count

collider vertex count

- In general, overall computation time increases with more vertices

- however, drops in constraint solving with increasing vertices needs further investigation

- collision generation time increases as cloth vertices increase, but not as dramatically as when
rigidbody collider vertices increase

- probably because increasing rigidbody vertices increases memory access per cloth vertex

Performance: varying cloth size and work group size

varying cloth vertex count (386 vertex collider, varying workgroup size (1296 vertex cloth, 6156
workgroup size 32, averaged over 600 frames) vertex collider, averaged across 600 frames)
20000 .
4000 [0 resolve collisions L :is::::eizlr:l;‘s;n“
(microseconds)
B generate
B generate - collisions (
5 collisions (> 15000 microseconds)
b AREL microseconds) @ I project constraints
B |] project % (microseconds)
% constraints (3
3 microseconds) 5 10000
< 2000 o
s b
3 :
g £ 5000
£ 1000
4 8 16 32 64 128

121 256 529 1296 ;
workgroup size

cloth vertex count

- again, drop in constraint solving time between tests needs further investigation
- increasing work group size seems to help up to a point
- however, more data needs to be collected

Future Work

- “real” animation system - BVH player?

- octree acceleration

- construction with space filling curves
- short stack traversal
- https://www.cse.iitb.ac.in/~rhushabh/publications/octree

- cloth self collision

https://www.cse.iitb.ac.in/~rhushabh/publications/octree

Questions?

.
vmo Createv Watchv OnDemandv Upgrade Search videos, pec

- o @ CE

Warning: this video could be even more awesome. Help this video look its best by following these video file recommendations. x

@ PBD Cloth with OpenGL Compute Shaders

Kangning Li 2

https://vimeo.com/148582926

