
Compute Shader cloth
github.com/likangning93/GPU_cloth



Motivation
Animators need to see cloth motion quickly to make edits and control decisions.

Academics: “It’s physically accurate!” Artists: “But what if I want her dress to swish like 
this instead? or like this? or like this? or like ...”

https://commons.wikimedia.org/wiki/File:Cloth_Simulation.gif
Disney Pixar, Inside Out: 
https://media.giphy.com/media/uT2g55XqavoRy/giphy.gif



What I did:
- convertor from obj -> simulation internal format

- including internal constraint generation

- basic rendering with a geometry shader
- simulation solver - caveats and details to follow
- performance analysis tools



How close did I get?
There’s still a lot of work to be done… but it’s a start!

Disney Pixar, Inside Out: 
https://media.giphy.com/media/uT2g55XqavoRy/giphy.gif



Cloth Simulation
- cloth is often simulated as a mass-spring system
- basically, every step involves moving a bunch of points according to forces 

and maintaining distance relationships to neighbors



Position Based Dynamics - Overview
In each timestep:

1) apply external forces (gravity) and damping to velocities
2) compute predicted positions
3) correct predictions with internal constraints

a) the “springs” in the mass spring system
b) solved N times -> more stable as N increases

4) generate and resolve collision constraints
5) set start positions and velocities for the next timestep

details and math here: 
http://matthias-mueller-fischer.ch/publications/posBasedDyn.pdf

http://matthias-mueller-fischer.ch/publications/posBasedDyn.pdf


Position Based Dynamics - On the GPU?
In one timestep:

1) apply external forces (gravity) and damping to velocities - parallelize by vertex
2) compute predicted positions - parallelize by vertex
3) correct predictions with internal constraints - parallelize by constraint

a) the “springs” in the mass spring system
b) solved N times -> more stable as N increases

4) collision constraints - at most 1 per vertex, so parallelize by vertex
5) set start positions and velocities for the next timestep - by vertex

So basically the simulated cloth needs two types of data in buffers:

- vertex info (velocity, position, mass)
- constraint info (“these two vertices shouldn’t separate by more than x”)



Caveats and Details: how does SSBO data work?!
- SSBO: shader storage buffer object
- like a more generalized version of a VBO
- compute shaders expect data to be transferred as vec4s - transfer positions 

as vec3s and you get something like this instead of this:



Caveats and Details: Constraints
- a vertex’s position is corrected by constraints, which 

in turn are based on its neighboring vertices
- each vertex may have up to 8 constraints!
- how to parallelize without race conditions?

- atomics? OpenGL compute only offers atomics for ints!

- solution: 
- build multiple buffers of non-conflicting constraints
- evaluate constraint sets in separate passes

ssbo[0] ssbo[1]

ssbo[2]

ssbo[3]ssbo[4]ssbo[5]

ssbo[6]

ssbo[7]



Caveats and Details: incoherent memory, tragedy
- Compute Shaders operate on “incoherent” memory
- so compute shader invocation B might not wait for a previous invocation A to 

finish up with data before starting
- 3-week long bug: with only gravitational influence, my cloth did this:

- solution: glMemoryBarrier
- prevents access to A’s memory
- until A is done with it
- PBD’s stability: even before memory barriers it kind of worked!



Caveats and Details: incoherent memory, tragedy
How did I find out about this?

- ran simulation with debug code between shader calls: problem disappeared!
- ran simulation on a machine with a slower CPU: problem disappeared!
- finally read up on the OpenGL compute memory model: 

https://www.opengl.org/wiki/Memory_Model

https://www.opengl.org/wiki/Memory_Model


Performance: Analysis Overview
- data collected using OpenGL Timer Queries on specific stages

- internal constraints stage
- collision detection stage (naive detection)
- collision resolution stage

- technique: http://www.lighthouse3d.com/tutorials/opengl-timer-query/
- varied:

- Cloth size
- Rigidbody collider size
- compute shader work group size

http://www.lighthouse3d.com/tutorials/opengl-timer-query/


Performance: varying cloth size and collider size

- in general, overall computation time increases with more vertices
- however, drops in constraint solving with increasing vertices needs further investigation
- collision generation time increases as cloth vertices increase, but not as dramatically as when 

rigidbody collider vertices increase
- probably because increasing rigidbody vertices increases memory access per cloth vertex



Performance: varying cloth size and work group size

- again, drop in constraint solving time between tests needs further investigation
- increasing work group size seems to help up to a point
- however, more data needs to be collected



Future Work
- “real” animation system - BVH player?
- octree acceleration

- construction with space filling curves
- short stack traversal
- https://www.cse.iitb.ac.in/~rhushabh/publications/octree

- cloth self collision

https://www.cse.iitb.ac.in/~rhushabh/publications/octree


Questions?

https://vimeo.com/148582926

