
Week 2 Lesson 1

Introduction to algorithms

Agenda

- Algorithm definition
- Introducing some real life problems
- Algorithm strategies

What is an Algorithm

• Algorithms are the ideas behind computer
programs.

• An algorithm is the thing which stays the same
whether the program is in C running on a core i7 in
New York or is in Java running on a Macintosh in
Kathmandu!

• To be interesting, an algorithm has to solve a
general, specified problem.
• An algorithmic problem is specified by describing the set

of instances it must work on and what desired properties
the output must have.

3

Example: Sorting

• Input: A sequence of N numbers a1:::an
• Output: the permutation (reordering) of the input

sequence such as a1 < a2 <: : : < an.
• We seek algorithms which are correct and efficient.

4

 Robot Tour Optimization

Suppose you have a robot arm equipped with a tool,
say a soldering iron. To enable the robot arm to do a
soldering job, we must construct an ordering of the
contact points, so the robot visits (and solders) the
points in order. We seek the order which minimizes
the testing time (i.e. travel distance) it takes to
assemble the circuit board.

5

Find the Shortest Robot Tour

6

Nearest Neighbor Tour

• A popular solution starts at some point p0 and then
walks to its nearest neighbor p1 first, then repeats
from p1, etc. until done.

• Nearest Neighbor Tour is Wrong!

• A Correct Algorithm: Exhaustive Search
• We could try all possible orderings of the points,

then select the one which minimizes the total
length

7

Efficiency: Why Not Use a
Supercomputer?

• Exhaustive Search is Slow!
• Because it tries all n! permutations, it is much too

slow to use when there are more than 10-20
points.

• A faster algorithm running on a slower computer
will always win for sufficiently large instances

• Usually, problems don’t have to get that large
before the faster algorithm wins

8

Selecting the Right Jobs

• A movie star wants to the select the maximum
number of staring roles such that no two jobs
require his presence at the same time

9

Earliest Job First

• Start working as soon as there is work available:
EarliestJobFirst(I)

Accept the earliest starting job j from I which
does not overlap any previously accepted job, and
repeat until no more such jobs remain.

10

Earliest Job First is Wrong!

• The first job might be so long (War and Peace) that
it prevents us from taking any other job.

11

Shortest Job First

• Always take the shortest possible job, so you
spend the least time working (and thus
unavailable).

ShortestJobFirst(I)
While (I) do
Accept the shortest possible job j from I.
Delete j, and intervals which intersect j from I.

12

Shortest Job First is Wrong!

• Taking the shortest job can prevent us from taking
two longer jobs which barely overlap it.

13

First Job to Complete

• Take the job with the earliest completion date:
OptimalScheduling(I)

While (I) do
Accept job j with the earliest completion date.
Delete j, and whatever intersects j from I.

14

Algorithm Strategies

General Concepts

• Algorithm strategy
• Approach to solving a problem
• May combine several approaches

• Algorithm structure
• Iterative ⇒ execute action in loop
• Recursive ⇒ reapply action to subproblem(s)

• Problem type
• Satisfying ⇒ find any satisfactory solution
• Optimization ⇒ find best solutions (vs. cost metric)

16

Some Algorithm Strategies

• Divide and conquer algorithms
• Dynamic programming algorithms
• Greedy algorithms
• Backtracking algorithms
• Branch and bound algorithms
• Heuristic algorithms

17

Divide and Conquer

• Based on dividing problem into subproblems
• Approach

1. Divide problem into smaller subproblems
• Subproblems must be of same type
• Subproblems do not need to overlap

2. Solve each subproblem recursively
3. Combine solutions to solve original problem

• Usually contains two or more recursive calls

18

Divide and Conquer – Examples

• Binary Search
• Quicksort

• Partition array into two parts around pivot
• Recursively quicksort each part of array
• Concatenate solutions

• Mergesort
• Partition array into two parts
• Recursively mergesort each half
• Merge two sorted arrays into single sorted array

• Counting Inversion

19

Dynamic Programming Algorithm

• Based on remembering past results
• Approach

1. Divide problem into smaller subproblems
• Subproblems must be of same type
• Subproblems must overlap

2. Solve each subproblem recursively
• May simply look up solution

3. Combine solutions into to solve original problem
4. Store solution to problem

• Generally applied to optimization problems

20

Fibonacci Algorithm

• Fibonacci numbers
• fibonacci(0) = 1
• fibonacci(1) = 1
• fibonacci(n) = fibonacci(n-1) + fibonacci(n-2)

• Recursive algorithm to calculate fibonacci(n)
• If n is 0 or 1, return 1
• Else compute fibonacci(n-1) and fibonacci(n-2)
• Return their sum

• Simple algorithm ⇒ exponential time O(2n)

21

Dynamic Programming – Example

• Dynamic programming version of fibonacci(n)
• If n is 0 or 1, return 1
• Else solve fibonacci(n-1) and fibonacci(n-2)

• Look up value if previously computed
• Else recursively compute

• Find their sum and store
• Return result

• Dynamic programming algorithm ⇒ O(n) time
• Since solving fibonacci(n-2) is just looking up value

22

Dynamic Programming - Example

• 0-1 Knapsack
• Longest Common Subsequence
• Longest Increasing Sequence
• Sum of Subset
• Warshall’s All pairs shortest path
• Bellman Ford’s Single Source Shortest Path
• Matrix Chain Multiplication

23

Greedy Algorithm

• Based on trying best current (local) choice
• Approach

• At each step of algorithm choose best local solution

• Avoid backtracking, exponential time O(2n)
• Hope local optimum lead to global optimum

24

Greedy Algorithm – Example

Kruskal’s Minimal Spanning Tree Algorithm
sort edges by weight (from least to most)
tree = ∅
for each edge (X,Y) in order

if it does not create a cycle
add (X,Y) to tree
stop when tree has N–1 edges

Picks best
local solution
at each step

25

Greedy Algorithm - Example

• Dijkstra’s Single Source Shortest Path
• Minimum Spanning Tree – Prim & Kruskal
• Fractional Knapsack Problem
• Huffman Coding

26

• Thanks for patience hearing!

27

