1 of 39

Variational Bayesian Experimental Design for Geophysical Application

Dominik Strutz & Andrew Curtis

2 of 39

2

Design experiments to answer specific scientific questions

  • What information is provided by the experiment ?

  • How can experimental design be done efficiently ?

3 of 39

3

prior information

posterior information

-

information gain (data, design) =

4 of 39

4

prior information

posterior information

-

information gain (data, design) =

5 of 39

5

prior information

posterior information

-

information gain (data, design) =

6 of 39

6

prior information

posterior information

-

excepted information gain (design) =

average over all data plausible according to prior information

7 of 39

7

prior information

posterior information

-

excepted information gain (design) =

average over all data plausible according to prior information

8 of 39

8

prior information

posterior information

-

excepted information gain (design) =

average over all data plausible according to prior information

9 of 39

9

prior information

posterior information

-

excepted information gain (design) =

average over all data plausible according to prior information

10 of 39

10

prior information

posterior information

-

excepted information gain (design) =

average over all data plausible according to prior information

11 of 39

11

prior information

posterior information

-

excepted information gain (design) =

average over all data plausible according to prior information

12 of 39

12

A quantity to assess the quality of an experimental design

prior information

posterior information

-

average over all data plausible according to prior information

excepted information gain (design) =

13 of 39

13

inverse problem

inverse problem

prior distribution

prior samples

data samples

forward function

forward function

forward function

forward function

posterior distributions

inverse problem

EIG

sample from prior

calculate information gain

experimental design

inverse problem

14 of 39

14

inverse problem

inverse problem

prior distribution

prior samples

data samples

forward function

forward function

forward function

forward function

posterior distributions

inverse problem

EIG

sample from prior

calculate information gain

experimental design

inverse problem

15 of 39

Variational Methods

15

data samples

posterior distributions

inverse problem

16 of 39

Variational Methods

16

data

Mixture Density Network

data samples

posterior distributions

inverse problem

17 of 39

Variational Methods

17

data

Mixture Density Network

data samples

posterior distributions

inverse problem

18 of 39

18

Design experiments to answer specific scientific questions

19 of 39

19

CO₂ injection

CO₂ Interrogation

20 of 39

20

Layer

Parameter

Value

Unit

Upper Layer

(m/s)

(m/s)

(kg/m³)

(m)

Lower Layer

(GPa)

(GPa)

porosity

(GPa)

(kg/m³)

(GPa)

(kg/m³)

(GPa)

(kg/m³)

CO₂ Interrogation

21 of 39

21

Layer

Parameter

Value

Unit

Upper Layer

(m/s)

(m/s)

(kg/m³)

(m)

Lower Layer

(GPa)

(GPa)

porosity

(GPa)

(kg/m³)

(GPa)

(kg/m³)

(GPa)

(kg/m³)

fluid properties

saturated rock properties

seismic properties

 

 

CO₂ Interrogation

22 of 39

22

CO₂ Interrogation

23 of 39

23

CO₂ Interrogation

reflection coefficient

24 of 39

24

CO₂ Interrogation

reflection coefficient

25 of 39

25

CO₂ Interrogation

reflection coefficient

26 of 39

26

CO₂ Interrogation

reflection coefficient

27 of 39

27

CO₂ Interrogation

reflection coefficient

28 of 39

28

CO₂ Interrogation

reflection coefficient

29 of 39

29

CO₂ Interrogation

reflection coefficient

30 of 39

30

CO₂ Interrogation

reflection coefficient

31 of 39

31

CO₂ Interrogation

reflection coefficient

32 of 39

32

CO₂ Interrogation

reflection coefficient

33 of 39

33

CO₂ Interrogation

including data uncertainty

reflection coefficient

reflection coefficient

34 of 39

34

CO₂ Interrogation

35 of 39

35

CO₂ Interrogation

36 of 39

36

CO₂ Interrogation

+25% EIG

Compared to heuristic:

37 of 39

37

CO₂ Interrogation

+25% EIG

+8% EIG

Compared to heuristic:

38 of 39

38

CO₂ Interrogation

+25% EIG

+8% EIG

+8% EIG

Compared to heuristic:

39 of 39

39

Visit my website (dominik-strutz.github.io) for further updates and contact information

For more information see our recently published preprint

We can design experiments to answer specific scientific questions

  • Machine learning enables calculating the expected information gain efficiently

  • Specialised designs provide more information on specific scientific questions