Variational Bayesian Experimental Design for Geophysical Application
Dominik Strutz & Andrew Curtis
2
Design experiments to answer specific scientific questions
3
prior information
posterior information
-
information gain (data, design) =
4
prior information
posterior information
-
information gain (data, design) =
5
prior information
posterior information
-
information gain (data, design) =
6
prior information
posterior information
-
excepted information gain (design) =
average over all data plausible according to prior information
7
prior information
posterior information
-
excepted information gain (design) =
average over all data plausible according to prior information
8
prior information
posterior information
-
excepted information gain (design) =
average over all data plausible according to prior information
9
prior information
posterior information
-
excepted information gain (design) =
average over all data plausible according to prior information
10
prior information
posterior information
-
excepted information gain (design) =
average over all data plausible according to prior information
11
prior information
posterior information
-
excepted information gain (design) =
average over all data plausible according to prior information
12
A quantity to assess the quality of an experimental design
prior information
posterior information
-
average over all data plausible according to prior information
excepted information gain (design) =
13
inverse problem
inverse problem
prior distribution
prior samples
data samples
forward function
forward function
forward function
forward function
posterior distributions
inverse problem
EIG
sample from prior
calculate information gain
experimental design
inverse problem
14
inverse problem
inverse problem
prior distribution
prior samples
data samples
forward function
forward function
forward function
forward function
posterior distributions
inverse problem
EIG
sample from prior
calculate information gain
experimental design
inverse problem
Variational Methods
15
data samples
posterior distributions
inverse problem
Variational Methods
16
data
Mixture Density Network
data samples
posterior distributions
inverse problem
Variational Methods
17
data
Mixture Density Network
data samples
posterior distributions
inverse problem
18
Design experiments to answer specific scientific questions
19
CO₂ injection
CO₂ Interrogation
20
Layer | Parameter | Value | Unit |
Upper Layer | | | (m/s) |
| | | (m/s) |
| | | (kg/m³) |
| | | (m) |
Lower Layer | | | (GPa) |
| | | (GPa) |
porosity | | | |
| | | (GPa) |
| | | (kg/m³) |
| | | (GPa) |
| | | (kg/m³) |
| | | (GPa) |
| | | (kg/m³) |
CO₂ Interrogation
21
Layer | Parameter | Value | Unit |
Upper Layer | | | (m/s) |
| | | (m/s) |
| | | (kg/m³) |
| | | (m) |
Lower Layer | | | (GPa) |
| | | (GPa) |
porosity | | | |
| | | (GPa) |
| | | (kg/m³) |
| | | (GPa) |
| | | (kg/m³) |
| | | (GPa) |
| | | (kg/m³) |
fluid properties
saturated rock properties
seismic properties
CO₂ Interrogation
22
CO₂ Interrogation
23
CO₂ Interrogation
reflection coefficient
24
CO₂ Interrogation
reflection coefficient
25
CO₂ Interrogation
reflection coefficient
26
CO₂ Interrogation
reflection coefficient
27
CO₂ Interrogation
reflection coefficient
28
CO₂ Interrogation
reflection coefficient
29
CO₂ Interrogation
reflection coefficient
30
CO₂ Interrogation
reflection coefficient
31
CO₂ Interrogation
reflection coefficient
32
CO₂ Interrogation
reflection coefficient
33
CO₂ Interrogation
including data uncertainty
reflection coefficient
reflection coefficient
34
CO₂ Interrogation
35
CO₂ Interrogation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36
CO₂ Interrogation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+25% EIG
Compared to heuristic:
37
CO₂ Interrogation
+25% EIG
+8% EIG
Compared to heuristic:
38
CO₂ Interrogation
+25% EIG
+8% EIG
+8% EIG
Compared to heuristic:
39
Visit my website (dominik-strutz.github.io) for further updates and contact information
For more information see our recently published preprint
We can design experiments to answer specific scientific questions