

Connect. Collaborate. Accelerate.

Business Analysis and Trade-Offs for Chiplet-Based System Design

<u>Marek Hempel</u>, Anu Ramamurthy, Kash Johal, Trent Uehling, James Wong, Irina Sellhusen, Rajesh Pendurkar, Boon Chong Ang, Allan Cantle, Bapi Vinnakota

Why another Whitepaper on Chiplets?

Chiplet Whitepapers

Most whitepaper only focus
 on benefits/challenges

SIEMENS → Heterogeneous chipter WHITE PAPER Heterogen	Keign and integration: bringing a new twist to SIP design	<u>å</u>
chiplet des integration bringing a twist to Sil		
Design for Processor	Chiplet Technology and the AMD EPYC [™] and Ry Families : Industrial Proc Cite This PpF	luct
38 Cites in Papers	an Beck; Thomas Burd; Kevin Lepak; Ga EPAPER hiplets and Heterogeneous P nanging System Design and A	cādence ackaging Are

Cost Calculators

Full factory cost alone does
 not capture all details

		Monolithic	
		Baseline	Chiplet
	Die/Chiplet Eff Area (mm2)	500	175
	Wafer Size (mm)	300	300
	Quantity	1	3
	Wafer Price	\$ 10,000	\$ 10,000
Inputs	Process Maturity	Very Mature	Mature
	Defect Density	0.05	0.08
	Wafer sort time (s)	20	15
	Wafer Sort Cost	\$ 1.39	\$ 1.04
	Package & Interposer Cost	\$ 30	\$ 35
	Final Package Test Time (s)	20	20
	Final Package Test Cost	\$ 1.39	\$ 1.39
	GDPW	109	346
Chiplot	NDPW	85	301
Chiplet	Yield (Murphy Model)	78.3%	87.1%
Outputs	Silicon Cost	\$ 117.65	\$ 99.67
	Packaging and Test	\$ 32.78	\$ 37.43
System	Aggregate Silicon Cost	\$ 117.65	\$ 99.67
	Relative Silicon Area		105%
	Relative Packaging & Test		114%
Costs	Relative Total Cost		91%
	Total Unit Cost	\$ 150.42	\$ 137.10

Business Challenges

• ODSA Business Challenge Talks by 9 companies 2023

Company	Presenters	Date
<u>Ventena</u>	Travis Lanier	02/03/2023
<u>Achronix</u>	Nick Ilyadis	02/03/2023
<u>eTopus</u>	Kash	02/10/2023
JCET	Michael Lui	02/10/2023
<u>NXP</u>	Trent Uehling	02/17/2023
ADI	Marek Hempel	02/17/2023
<u>Microchip</u>	Timothy Pezarro	03/03/2023
Marvell	Mark Kuemerle	03/10/2023
AMD	H. Dhavaleswarapu	03/10/2023

White Paper - Chiplet Business Considerations

Goal:

- Holistic chiplet business case analysis comparison
- Highlight technical • interdependencies

Whitepaper Chapters

Testability

8. Standardization

4. Packaging

7. Marketplace

9. Conclusion

•Audience:

- Businesspeople
- Product managers
- System architects

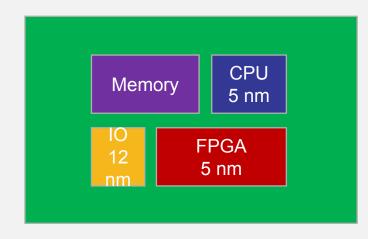
http://tiny.cc/ODSA-Biz-WP-Draft

Chiplet Architecture

Homogeneous Design

ASIC	CPU
7 nm	7 nm
IO	CPU
7 nm	7 nm

Benefits


- Smaller die 🛛 🗆 better yield
- No reticle limit

 build large systems

Often used for

- Scalable architectures
- Very large compute systems

Heterogeneous Design

Benefits

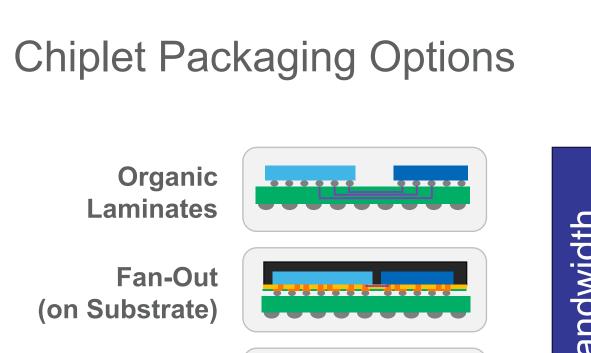
- Use mature process node □ lower cost
- Use specialized process
 higher performance

Often used for

- Disaggregation by function
- Splitting analog / digital

Die-to-Die Interfaces

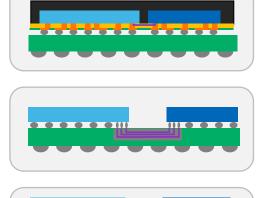
Die-to-Die Interface	Ultra Short Reach SerDes (XSR/USR)	Bunch of Wires (BoW)	Advanced Interface Bus (AIB)	Universal Chiplet Interface (UCle)
Adoption	Industry standard / in production	~ 10 companies designing with BoW	~ 10x <u>3rd party chiplets,</u> Intel's chiplets	~120 member companies
Package	Laminate	Laminate, Fan-Out, Interposer	Fan-Out, EMIB, Interposer	Laminate, Fan-Out, EMIB Interposer
Bump Pitch	130-170 μm	45-170 μm	25 - 55 μm	10-130 µm
Lane Rate	112 G / 224 G	2 - 32 Gbps		4 - 32 Gbps
Latency	~10 ns	< 2 ns		< 2 ns
Reach	< 50 mm	< 25 mm	< 25 mm	< 10 mm
Energy	1-4 pJ/bit	0.3-0.5 pJ/bit	0.5-0.8 pJ/bit	0.25-0.5 pJ/bit
Edge Density	< 3 Tbps/mm	< 4 Tbps/mm	< 1.6 Tbps/mm	< 10 Tbps/mm
Link Layer	Not Defined	BoW link layer, supporting AXI, CHI	AXI	Raw, Streaming, PCIe, CXL
Target Applications	Optical Networking	Disaggregation, e.g Al accelerators, automotive	Aerospace & defense ecosystem	Scale & split, system aggregation


• Performance Metrics

- Bandwidth range (Gbps)
- Beach front (Gbps/mm)
- PHY footprint (mm²)

- Energy(pJ/bit)
- Latency (ns)
- Reach (mm)

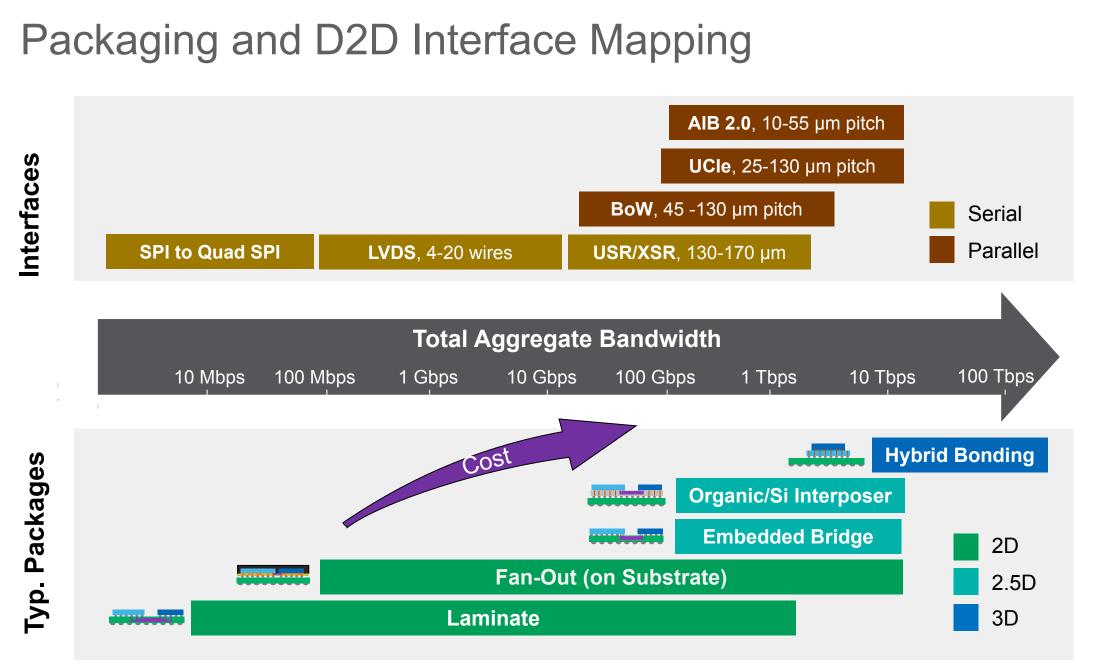
- Other Metrics
 - Package type
- Adoption
- Associated cost
- Maturity
- IP availability



Embedded Si Bridge

Silicon / Organic Interposer

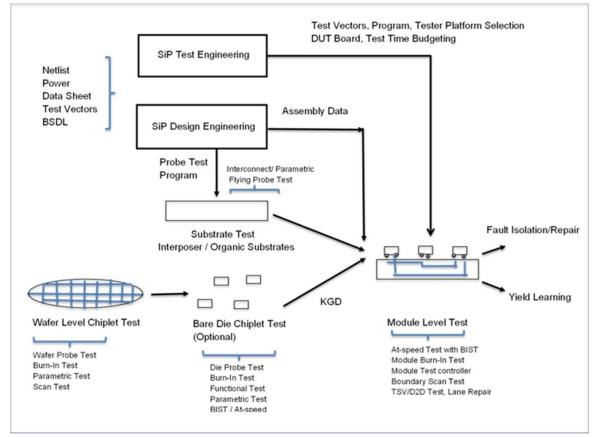
3D Stacking (Hybrid Bonding)



Cost & Bandwidth

Packages need to match their D2D interfaces

- Bump and escape pitch
 → via pad, L/S
- Depths of signal bumps
 → # of layers
- Needed insertion loss
 → dielectric choice

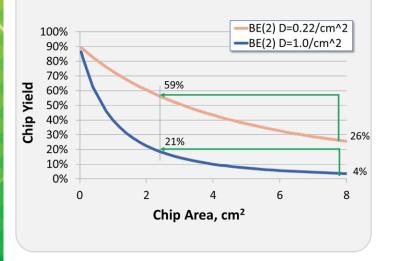


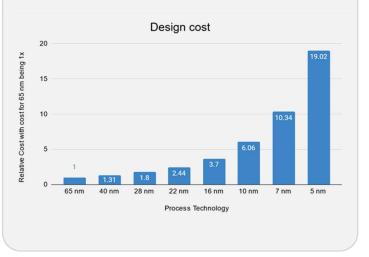
Chiplet Testability

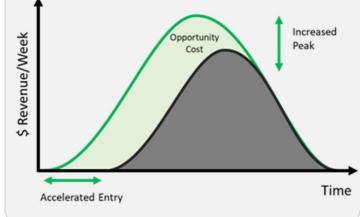
- Why test?
 - Lower scrap cost from failing parts
- Design for Test (DFT) techniques
 - ATGP, Memory/Logic BIST, Boundary Scan, etc.
 - IEEE 1838 3D test architecture
- Test points inserted at various steps, e.g.
 - Wafer probe 🗆 KGD
 - Substrate test
 - Final test / System Level Test
- Test Cost ~ test time * hourly rate / units
 - Rule of thumb: test cost < 20% of die cost
 - Don't spend more than scrap cost savings

Three Financial Benefits of Chiplets

Yield Advantage

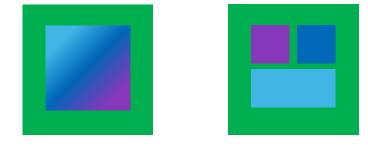

- Smaller die have higher yield
- Can off-set higher package, test cost for large systems
- See <u>ODSA cost model</u>




- Newer processes are more expensive to design on
- Shifting some functions to older nodes reduces cost

Early Entry Advantage

- Chiplet reuse increases TTM
- This can improve returns by:
 - Higher market share
 - Longer product life-cycle
 - Higher profit margin

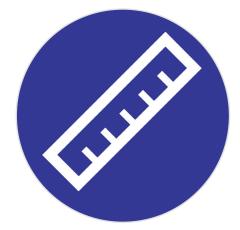


Monolithic vs. Chiplet Cost Trends

ROI =	(ASP - FFC) x Units
	NRE

FFC

NRE


		Monolithic Design	Chiplets Design
Non-Recurring Engineering Cost (NRE)	Chip Design	baseline	less *
	External IP	baseline	similar
	Mask Sets	baseline	depends
Full Factory Cost (FFC)	Silicon Cost	baseline	depends
	Probe	baseline	more
	Package	baseline	more
	Final Test	baseline	similar

Open Chiplet Economy And Standardization

- Open Chiplet Marketplace is not ready yet
 - Interoperability testing infrastructure not in place for chiplets
 - Bridge chiplets could help with interface link-layer incompatibility
 - Supply chain like adv. packaging accessibility needs to improve
 - Getting started with chiplet requires investment and know-how
- Standards are key to an Open Chiplet Economy
 - Chiplet Design Exchange group spearheaded several contributions
 - Standardized chiplet models to ease system-level integration
 - Data Exchange format to describe chiplet properties
 - Integration workflows for heterogeneous chiplet systems

Summary

- Previous work hasn't captured a holistic view of chiplet-based design
- Economically viable chiplet-design depends on technology options
- Chiplet product portfolios have lower NRE through reuse, FFC depends
- 3rd party chiplets market still has its challenges but standards help.

ODSA Business Group

Compute

Project

Fridays, 9-10 am PT

Zoom Link

ODSA Mailing List

Next Projects & Events Chiplet Business OCP Chiplet **Challenges Workshop** Marketplace Mar 15th,2024

DPEN Compute Project®

Backup

Chiplet Business Issues by Count

Business

- 6x Cost benefit vs monolithic, cost overhead
- 3x Product schedule uncertainty, risk
- 2x Up-Front Cost, capability of self-development
- 2x Final Product Responsibility
- 2x Confidential Disclosure

Marketplace

- 3x Third Party Chiplet Availability
- 2x No open marketplace yet

Technical

町

- 4x D2D Interface Choice
- 3x Best packaging option std., adv.
- · Ox Ctandardization / ink lawar nowar concetration at a