# Online Mental Disorder Analysis

Improving feature engineering and analysis with Elasticsearch and Kibana

## About me



Elvis Saravia

Belize & Taiwan

ML & NLP / Lecturer / Blogger

7+ years: Financial & Graph Data Analysis

## What role does ML play in Search ? What role does Search play in ML?

## Journey

- Overview
- Introduce the Data
- Index Mapping
- Data Preprocessing & Ingest Pipeline
- Custom Analyzers
- Demo (Querying and Visualizations)

## **Motivation**

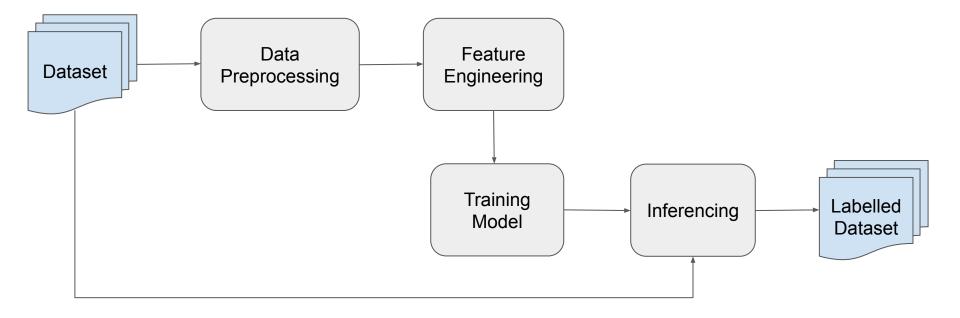
- Mental disorders impair ability to conduct daily functions
- Leverage *search* and *analytics* to *extract* and *explore* hidden and complex linguistic behaviour from natural language data (e.g., slang, emoticon, stopwords, misspelling, etc.)
- Use *insights* to improve machine learning systems that power chatbots (e.g., monitor and alleviate mood)



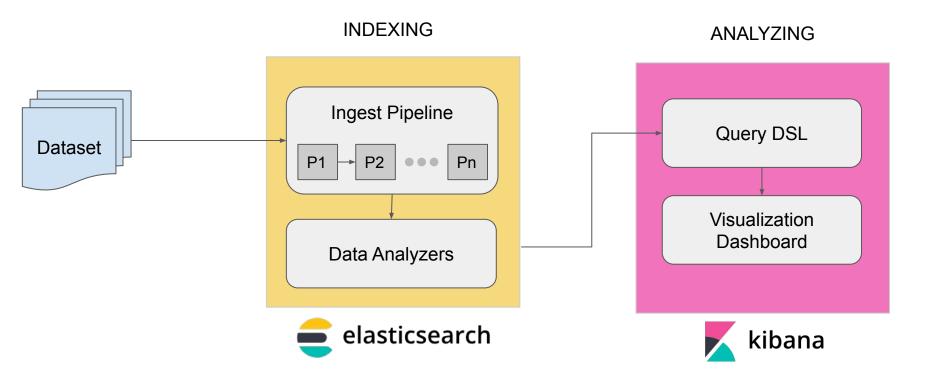
Woebot.io (mood tracker)

## Overview

#### Goals:


- To broadly demonstrate how to leverage Elasticsearch's *ingest pipeline* and *custom analyzers* for *preprocessing* and *feature engineering*
- To introduce *common best practices* for dealing with natural language data
- To discover *insights* that assist to improve feature engineering and ML models

Target Audience: Data Scientists / Data Engineers

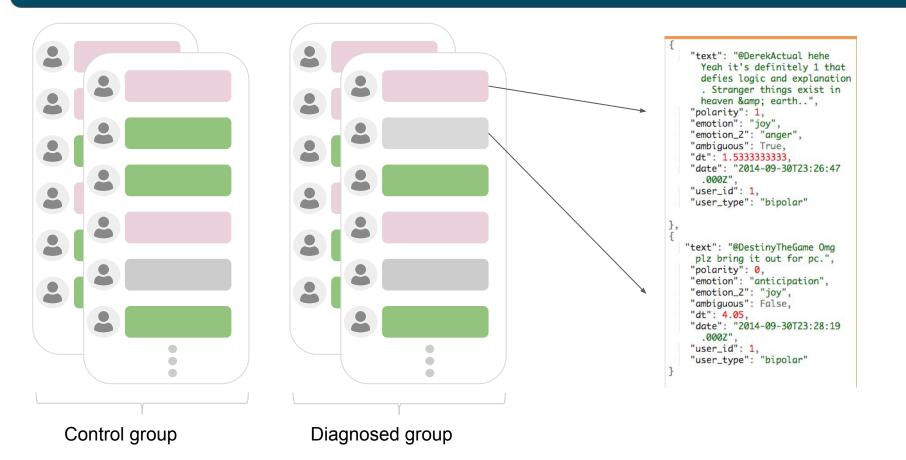

Prerequisites: Assumes basic knowledge of Elasticsearch, Kibana, and Python

**Duration:** 30 minutes (15 minute demo included)

## Scenario - Typical Machine Learning Pipeline



## Framework




## **Data Collection**

- Online self-reported, mental disorder cases (via "I am diagnosed with X") :
  - Bipolar disorder: *periods of depression and abnormally elevated mood* (278)
  - Border personality disorder: *longstanding mood swings* (203)
- Normal user profiles (548)

| text                                              | polarity | emotion      | emotion_2 | ambiguous | dt       | date                       | user_id | user_type |
|---------------------------------------------------|----------|--------------|-----------|-----------|----------|----------------------------|---------|-----------|
| @DerekActual hehe Yeah it's<br>definitely 1 that  | 1        | joy          | anger     | True      | 1.533333 | 2014-09-<br>30<br>23:26:47 | 1       | bipolar   |
| @DestinyTheGame Omg plz<br>bring it out for pc.   | 0        | anticipation | јоу       | False     | 4.050000 | 2014-09-<br>30<br>23:28:19 | 1       | bipolar   |
| @Redtippertruck with great<br>pleasure. Xxx       | 1        | јоу          | 0         | False     | 1.316667 | 2014-09-<br>30<br>23:32:22 | 1       | bipolar   |
| @TherapyAfterCSA every day.<br>Xxx                | 0        | јоу          | trust     | False     | 1.650000 | 2014-09-<br>30<br>23:33:41 | 1       | bipolar   |
| @Redtippertruck Hehe I signed<br>it lol. Also ask | 1        | sadness      | јоу       | True      | 7.033333 | 2014-09-<br>30<br>23:35:20 | 1       | bipolar   |

## Data - User Timeline



## Storing Data in Elasticsearch

#### Considerations before indexing data:

- How to transfer & index data?
  - Logstash / API client (python)
- What scheme or mapping should the data follow?
  - Fields, types, index mapping, preprocessing, etc.
- Any data transformations?
  - Ingest, Analyzers, etc.

```
"text": "@DerekActual hehe
      Yeah it's definitely 1 that
      defies logic and explanation
      . Stranger things exist in
      heaven & amp; earth ... ",
    "polarity": 1,
    "emotion": "joy",
    "emotion_2": "anger".
    "ambiguous": True,
    "dt": 1.53333333333.
    "date": "2014-09-30T23:26:47
      .000Z".
    "user id": 1.
    "user_type": "bipolar"
3,
   "text": "@DestinyTheGame Omg
     plz bring it out for pc.",
    "polarity": 0.
    "emotion": "anticipation",
    "emotion_2": "joy",
    "ambiguous": False,
    "dt": 4.05.
    "date": "2014-09-30T23:28:19
      .000Z".
    "user_id": 1.
    "user_type": "bipolar"
```

## Indexing

#### How to transfer index data?

- API client (Python library)
- Data is available in dataframe format
- Convert data to JSON
- Bulk insert data with Python library
  - Fast / Efficient
  - Flexibility in fields to include
  - Perform any transformations
  - (link to notebook)

```
converted = json.load(open("data/user_json/user.json"))
converted[0:2]
```

[{'text': "@DerekActual hehe Yeah it's definitely 1 that defies logic and explanation. Stranger things exist in heaven & earth..", 'polarity': 1, 'emotion': 'joy', 'emotion\_2': 'anger', 'ambiguous': True, 'dt': 1.5333333333, 'date': '2014-09-30T23:26:47.000Z', 'user\_id': 1,

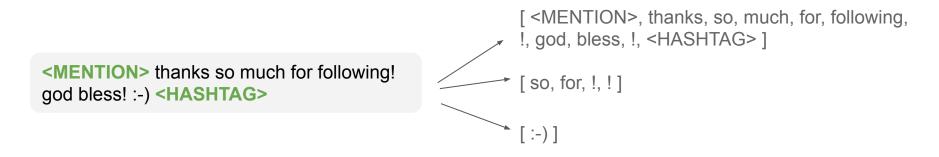
```
'user_type': 'bipolar'},
```

## **Index Mapping**

Index mapping provides a way of formatting or schematizing data:

- Configure default pipeline of processors
- Declare field types
- Configure custom analyzers
- 0 ...

```
}
},
"mappings": {
  "_doc":{
    "properties": {
      "date": {"type": "date"},
      "text": {
        "type": "text",
        "fields": {
          "ttokens": [ ],
          "stopwords": [ ],
          "positive_emoticons": {
          "negative_emoticons": {
      3,
      "emotion": {"type": "keyword"},
      "emotion_2": {"type": "keyword"},
      "ambiguous": {"type": "boolean"},
      "dt": {"type": "float"},
      "user_id": {
        "type": "text",
        "fields": {
          "keyword": {"type":"keyword"}
```


## Ingest Pipeline

- Provides a mechanism to preprocess data before indexing it
- An ingest pipeline is made of **processors:** 
  - Convert labels with 'set'
  - Lowercase with 'lowercase'
  - Extracts structured field with regex using 'grok'
  - Replace text with regex using 'gsub'

| @Bil365 thanks so much for following!<br>God bless! #happy                           | 1        |  |
|--------------------------------------------------------------------------------------|----------|--|
| •                                                                                    |          |  |
| <mention> thanks so much for following!<br/>god bless! <hashtag></hashtag></mention> | positive |  |

## Analyzers

- Analyzers provide a way to improve search and conduct special analyses on data
- We will use analyzers to **discover linguistic phenomena**:
  - Twitter special tokenizer
  - Extract stopwords from predefined list
  - Obtain positive and negative emoticons



## **Future Ideas**

- Build and train ML model based on processed text and features
- Store ML model and use Logstash to ingest real-time profiles of online mental disorder cases via "I am diagnosed with X" filter
- What can we learn from natural language that generalizes to logs, metrics, etc.)? 55.3.244.1 GET /index.html 15824 0.043
- Generalize pipeline to different conversations (chatbot, reviews, language etc.)

| Language      | Me gusta bailar ♡              |               | Generalized            |   |
|---------------|--------------------------------|---------------|------------------------|---|
| Reviews       | The screen quality is amazing! | $\rightarrow$ | NLP<br>Ingest Pipeline |   |
| QA / Dialogue | What is the city of Taiwan?    |               |                        | ~ |

## References

- Elasticsearch 6.6 Reference
- Elastic Resources and Training
- <u>Clinical NLP with Elasticsearch</u>
- OpenNLP with the Elastic stack
- MIDAS: Mental illness detection and analysis via social media

## Q&A

## Demo