Page 1 of 5

Lecture notes by Mr. Zalak Patel Page: - 1 -

LAPLACE TRANSFORMS

Weightage for university exam: 22Marks

No. of lectures required to teach: 06hrs

 Laplace Transforms:

Let f (t) be a given function of t, for all t  0

Then the Laplace transform of f (t) ,denoted by Lf (t) or f sF(s)or(s)

Can be defined by

Lf t  f s F s o s e f t dt st ( ) ( ) ( ) ( )

0

     

Where s is a real or complex parameter.

 Linearity of Laplace Transform:

Laplace transform is linear.

i.e. La f (t) b g(t)  a Lf (t) b Lg(t .)

 Formulae:

Sr.no f (t) Laplace of f (t)

1 f (t) =1  

s

L 1 1 

2 f (t) = at e   s a

L e at

  1

3 f (t) = at e

  s a

L e at

   1

4 f (t) =sin at   2 2 sin

s a

a L at

 

5 f (t) =cos at   2 2 cos

s a

s L at

 

6 f (t) =sinh at   2 2 sinh

s a

a L at  

7 f (t) =cosh at   2 2 cosh

s a

s L at  

8 f (t) = n

t   1 1

| 1 !      n n

n

s

n

s

n L t

 First Shifting Theorem:

Statement: If Lf (t) = f (s) then Le f (t) at = f (s  a)

 Change The Scale Property:

Statement: If Lf (t) = f (s) then Le f (bt) at =

b

1 

 

 

b

s a f , b>0

Page 2 of 5

Lecture notes by Mr. Zalak Patel Page: - 2 -

 Formulae:

Sr.no f (t) Laplace of f (t)

1 f (t) = at e sin bt    

2 2

at e sinbt

s a b

b L   

2 f (t) = at e cosbt    

2 2

cos

s a b

s a L e bt at

 

 

3 f (t) = at e sinh bt    

2 2

sinh

s a b

b L e bt at

  

4 f (t) = at e cosh bt    

2 2

cosh

s a b

s a L e bt at

 

 

5 f (t) = at e n

t       1 1

| 1 !     

  n n

at n

s a

n

s a

n L e t

 Inverse Laplace Transform:

If Lf (t) = f (s) then f (t) is called the inverse Laplace transform of

f (s) and denoted by  ( ) 1 L f s  = f (t).

Sr.no Laplace of f (t) Inverse of Laplace

1  

s

L 1 1  1 1 1 

  

s

L

2   s a

L e at

  1 at e

s a

L 

1 1

3   s a

L e at

   1 at e

s a

L   

1 1

4   2 2 sin

s a

a L at

  a

at

s a

L 1 sin

2 2

1 

5   2 2 cos

s a

s L at

  at

s a

s L cos 2 2

1 

6   2 2 sinh

s a

a L at   a

at

s a

L 1 sinh

2 2

1 

7   2 2 cosh

s a

s L at   at

s a

s L cosh 2 2

1 

8   1 1

| 1 !      n n

n

s

n

s

n L t  !1

1

!

1 1

1

1

1

 

 

 

n

t

s

or L

n

t

s

L

n

n

n

n

9    

2 2

at e sinbt

s a b

b L   

  e sinbt 1 1 at

2 2

1

s a b b

L 

 

10    

2 2

cos

s a b

s a L e bt at

 

 

  e bt

s a b

s a L at cos 2 2

1 

 

 

Page 3 of 5

Lecture notes by Mr. Zalak Patel Page: - 3 -

11    

2 2

sinh

s a b

b L e bt at

  

  e bt

s a b b

L at sinh 1 1

2 2

1 

 

12    

2 2

cosh

s a b

s a L e bt at

 

 

  e bt

s a b

s a L at cosh 2 2

1 

 

 

13       1 1

| 1 !     

  n n

at n

s a

n

s a

n L e t

 

at n at n

n e t

n

e t

s a n

L

!

1

| 1

1 1

1

1   

 

 Laplace transform of Derivative of f(t):

 Lf (t)  s Lf (t) f )0(

  ( )  ( ) )0( )0( )0( .............. )0( ( ) 1 2 3 (  )1         n n n n n n L f t s L f t s f s f s f f

 Laplace transform of the integration of f(t):

 If   . ( ) ( ) ( ) ( )

0 s

f s L f t f s then L f u du

t

  

 Derivative of Laplace transform of f(t):

 If  ( ) ( )  ( ) ( )1 f (s) ds

d L f t f s then L t f t n

n

n n   

 Integration of Laplace transform of f(t):

 If   f u du

t

f t L f t f s then L

s

( ) ( ) ( ) ( ) 

 

 

 Convolution:

Convolution of function f(t) and g(t) is defined and denoted by,

( *) )(

( ) ( )

( *) ( ) ( ) ( )

0

0

g t f t

g u f t u du

f t g t f u g t u du

t

t

 

 

 Convolution Theorem:

If Lf (t)  f (s) and Lgf (t)  g (s) then

    ( .) ( ) 1 L f s g s f t *)( g(t)   

t

f u g t u du

0

( ) ( )

*)( ( )

( ) ( )

0

g t f t

g u f t u du

t

  