"""

Skyrmion-Optics Metamaterial Cyclization System (SOMS-CS) v3.0: Chemically-Enhanced Transport.

Simulates photochemical cyclization using Skyrmion-guided optical transport, where the

efficiency of the optical tunneling is now coupled to the *intermediate chemical state*

of the precursor molecule, optimizing transport rates.

Core process steps:

 - 1. Circular Dichroism (CD) Acquisition: Identifies current molecular conformation.

 - 2. Stochastic Interpretation: Derives metamaterial geometry AND initial chemical conditions.

 - 3. Skyrmion Field & Optical Gate Configuration: Configures the magnetic and chiral fields.

 - 4. Reaction State & Photonic Tunneling Recalibration: Determines the chemical influence on optical coupling.

 - 5. Photochemical Cyclization Execution: The transformation process via guided light.

Requires: numpy, matplotlib (for visualization routines).

Usage:

    python metamaterial_dna_rna.py

"""

import math

import random

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

from typing import List, Tuple

# -------------------------------

# Skyrmion-Optics Metamaterial Cyclization System (SOMS-CS)

# -------------------------------

class SpectrumSignature:

    """Represents the Circular Dichroism signature of the current conformation."""

    def __init__(self, ellipticity: float, absorption_peak: float):

        self.ellipticity = ellipticity     # Handedness/chirality signal (mdeg)

        self.absorption_peak = absorption_peak # Wavelength (nm)

class MetamaterialParams:

    """Parameters defining the graphene-based stabilization scaffold."""

    def __init__(self, tensile_stress: float, pore_density: float, confinement_rigidity: float):

        self.tensile_stress = tensile_stress

        self.pore_density = pore_density

        self.confinement_rigidity = confinement_rigidity # How much the scaffold resists structural change

class ReactionState:

    """Parameters defining the chemical environment and molecular preparation."""

    def __init__(self, catalyst_activity: float, intermediate_stability: float):

        self.catalyst_activity = catalyst_activity  # E.g., Lewis acid strength (units)

        self.intermediate_stability = intermediate_stability # E.g., Solvent-mediated stabilization (units)

class SkyrmionGateConfig:

    """Parameters for the Tunable Skyrmion Field and the Chiral Optical Gate."""

    def __init__(self, magnetic_field: float, skyrmion_density: float, optical_polarization: float):

        self.magnetic_field = magnetic_field         # Controls Skyrmion size/stability (Tesla)

        self.skyrmion_density = skyrmion_density     # Density of the magnetic 'quanta' (nm^-2)

        self.optical_polarization = optical_polarization # Chiral light input (-1.0 to 1.0)

class PrecursorTarget:

    """Represents the target molecule for cyclization."""

    def __init__(self, name: str, ring_structure: str):

        self.name = name

        self.ring_structure = ring_structure # e.g., "Stero-Precursor", "Macro-Lactam"

# -------------------------------

# Initialization

# -------------------------------

def initialize_system():

    print("[INIT] SOMS-CS v3.0: Chemically-Enhanced Transport System initialized.\n")

# -------------------------------

# Circular Dichroism (CD) Spectrum Acquisition

# -------------------------------

def capture_cd_spectrum(target: PrecursorTarget) -> SpectrumSignature:

    """Simulates capturing the CD spectrum to determine current chiral state."""

    print(f"[CD-SCAN] Scanning target precursor: {target.name} for {target.ring_structure} cyclization.")

    ellipticity = round(random.uniform(-15.0, 15.0), 1)

    peak = round(random.uniform(280.0, 320.0), 1)

    return SpectrumSignature(ellipticity, peak)

# -------------------------------

# Stochastic Interpretation (Metamaterial & Initial Chemistry Derivation)

# -------------------------------

def interpret_stochastically(sig: SpectrumSignature) -> Tuple[MetamaterialParams, ReactionState]:

    """Interprets the signature to derive stabilizing metamaterial and initial reaction parameters."""

   

    # Metamaterial Derivation (as before, focusing on physical confinement)

    rigidity = 1.0 + abs(sig.ellipticity) / 10.0

    tensile_stress = sig.absorption_peak / 300.0 * 1.2

    pore_density = 0.5 + sig.absorption_peak * sig.ellipticity * 0.0001

    meta_params = MetamaterialParams(tensile_stress, pore_density, rigidity)

    # Initial Reaction State Derivation (new part)

    # High ellipticity (strong conformation) may require lower catalyst activity to prevent side reactions

    catalyst_activity = max(1.5 - abs(sig.ellipticity) * 0.05, 0.5)

    # Stability correlates with the absorption peak (electronic stability)

    intermediate_stability = sig.absorption_peak / 300.0 * 1.5

    reaction_state = ReactionState(catalyst_activity, intermediate_stability)

   

    return meta_params, reaction_state

# -------------------------------

# Skyrmion Field & Optical Gate Configuration

# -------------------------------

def derive_skyrmion_gate_geometry(params: MetamaterialParams, sig: SpectrumSignature) -> SkyrmionGateConfig:

    """Derives magnetic field and optical gate parameters."""

    magnetic_field = 0.8 + params.confinement_rigidity * 0.3

    skyrmion_density = math.log(params.tensile_stress + 1.0) * 5.0

    optical_polarization = -sig.ellipticity / 15.0

   

    return SkyrmionGateConfig(magnetic_field, skyrmion_density, optical_polarization)

# -------------------------------

# Reaction State & Photonic Tunneling Recalibration

# -------------------------------

def recalculate_tunneling_states(meta_params: MetamaterialParams, skyrmion_config: SkyrmionGateConfig, reaction_state: ReactionState) -> Tuple[float, float, float]:

    """

    Determines optical mode coupling efficiency and transport loss,

    introducing CHEMICAL INFLUENCE on coupling.

    """

    print("[RECAL] Recalculating Skyrmion-Photonic and Chemical states...")

   

    # Base Coupling Efficiency (Magnetic/Optical)

    base_coupling = min(skyrmion_config.skyrmion_density / 8.0, 0.98) * (1.0 - abs(skyrmion_config.optical_polarization) * 0.1)

   

    # Chemical Influence Factor (NEW)

    # Stable intermediates and high catalyst activity (within limits) improve electron/charge distribution,

    # facilitating photonic mode coupling with the spin-wave guide.

    chemical_influence = 1.0 + (reaction_state.catalyst_activity * reaction_state.intermediate_stability) * 0.1

   

    # Combined Coupling Efficiency

    combined_coupling = min(base_coupling * chemical_influence, 0.99)

   

    # Transport loss (Physical)

    transport_loss = max(0.01 + 1.0 / (meta_params.confinement_rigidity * 10.0), 0.05)

   

    print(f"[RECAL] Chemical Influence Factor: {round(chemical_influence, 3)}")

    print(f"[RECAL] Combined Coupling Efficiency: {round(combined_coupling, 3)}")

    return combined_coupling, transport_loss, chemical_influence

# -------------------------------

# Skyrmion-Optics Tunneling Efficiency Simulation

# -------------------------------

def simulate_tunneling_dynamics(iteration: int, chemical_influence: float) -> float:

    """Simulates the final efficiency of the light transport, now boosted by chemistry."""

    print(f"[SKYOP] Simulating Skyrmion-Optics tunneling efficiency at iteration {iteration}...")

   

    skyrmion_stability = 0.8 + np.sin(iteration * 0.4) * 0.15

   

    # Total effective efficiency (boosted by the chemical factor)

    tunneling_efficiency = max(0.9 * skyrmion_stability * chemical_influence - iteration * 0.05, 0.5)

    print(f"[SKYOP] Skyrmion Stability: {round(skyrmion_stability, 3)} | Tunneling Efficiency: {round(tunneling_efficiency, 3)}")

    return tunneling_efficiency

# -------------------------------

# Photochemical Cyclization Execution

# -------------------------------

def execute_cyclization(config: SkyrmionGateConfig, efficiency: float) -> Tuple[bool, float, float]:

    """Attempts the final cyclization, incorporating tunneling efficiency."""

   

    cyclization_yield = efficiency * random.uniform(0.85, 0.95)

    enantiomeric_excess = abs(config.optical_polarization) * random.uniform(0.90, 0.99) * 100.0

   

    if efficiency < 0.75:

        print("[ERROR] Optical Tunneling Efficiency too low. Reaction poorly controlled. Cyclization aborted.\n")

        return False, 0.0, 0.0

       

    print(f"[SUCCESS] Photochemical cyclization completed via Skyrmion-guided light.")

    return True, cyclization_yield, enantiomeric_excess

# -------------------------------

# Adaptive Cyclization Loop

# -------------------------------

def adaptive_cyclization_loop(target: PrecursorTarget) -> Tuple[SkyrmionGateConfig, MetamaterialParams, ReactionState, List[float], List[float], List[float], float, float]:

    """The iterative loop to adjust all parameters (Metamaterial, Skyrmion, and Chemical) for optimal results."""

   

    sig = capture_cd_spectrum(target)

    meta_params, reaction_state = interpret_stochastically(sig)

    skyrmion_config = derive_skyrmion_gate_geometry(meta_params, sig)

    coupling_history = []

    loss_history = []

    efficiency_history = []

    chemical_influence_history = []

   

    final_yield, final_ee = 0.0, 0.0

    for i in range(5): # Increased iterations for more adaptation

        print(f"[LOOP] Iteration {i+1}: Evaluating Skyrmion-Optics Transport with Chemical Influence...")

        combined_coupling, transport_loss, chemical_influence = recalculate_tunneling_states(meta_params, skyrmion_config, reaction_state)

        coupling_history.append(combined_coupling)

        loss_history.append(transport_loss)

        chemical_influence_history.append(chemical_influence)

        tunneling_efficiency = simulate_tunneling_dynamics(i, chemical_influence)

        efficiency_history.append(tunneling_efficiency)

        # --- Adaptive Tuning based on Efficiency Feedback ---

       

        if tunneling_efficiency < 0.85:

            # Low efficiency requires aggressive adaptation

            print("[ADAPT] Tunneling efficiency low. Prioritizing chemical optimization to boost coupling.")

           

            # TUNE 1: Chemical (Improve intermediate stability to reduce electronic drag)

            reaction_state.intermediate_stability *= 1.08

            reaction_state.intermediate_stability = np.clip(reaction_state.intermediate_stability, 0.1, 2.5)

           

            # TUNE 2: Magnetic (Increase Skyrmion density for better wave guiding)

            skyrmion_config.skyrmion_density *= 1.05

           

        elif combined_coupling < 0.8:

            # Low coupling suggests mismatch between optical/chemical/physical states

            print("[ADAPT] Low coupling efficiency. Adjusting catalyst for electronic state alignment.")

           

            # TUNE 3: Chemical (Fine-tune catalyst to optimize the electronic state for transport)

            reaction_state.catalyst_activity += random.uniform(-0.05, 0.05)

            reaction_state.catalyst_activity = np.clip(reaction_state.catalyst_activity, 0.5, 2.0)

           

            # TUNE 4: Physical (Minor adjustment to rigidity to support the new chemical state)

            meta_params.confinement_rigidity *= 1.01

            skyrmion_config = derive_skyrmion_gate_geometry(meta_params, sig)

        success, current_yield, current_ee = execute_cyclization(skyrmion_config, tunneling_efficiency)

       

        if success and current_ee > 95.0 and current_yield > 0.90:

            final_yield = current_yield

            final_ee = current_ee

            print(f"[RESULT] {target.name} successfully cyclized to optimal parameters. Yield: {round(final_yield*100, 1)}%, EE: {round(final_ee, 1)}%.\n")

            return skyrmion_config, meta_params, reaction_state, coupling_history, loss_history, efficiency_history, final_yield, final_ee

        print("[RETRY] Cyclization not optimal. Retrying...\n")

    # Return final best attempt if loop completes without optimal success

    return skyrmion_config, meta_params, reaction_state, coupling_history, loss_history, efficiency_history, final_yield, final_ee

# -------------------------------

# Visualization Routines

# -------------------------------

def visualize_tunneling_dynamics(target: PrecursorTarget, efficiency_history: List[float], chemical_influence_history: List[float]):

    """Visualizes the Skyrmion-Optics Tunneling Efficiency, highlighting the chemical boost."""

    fig = plt.figure()

    ax = fig.add_subplot(111, projection='3d')

    iterations = list(range(1, len(efficiency_history) + 1))

   

    # Skyrmion density history

    skyrmion_density = [4.0 + np.sin(i*0.6) * 1.5 + i*0.5 for i in iterations] # Approximate growth over iterations

    ax.plot(skyrmion_density[:len(chemical_influence_history)], chemical_influence_history, efficiency_history, marker='o', color='lightgreen')

    ax.set_title(f"Transport Rate vs. Chem/Mag Control: {target.name}")

    ax.set_xlabel("Skyrmion Density (nm^-2)")

    ax.set_ylabel("Chemical Influence Factor")

    ax.set_zlabel("Tunneling Efficiency")

    plt.tight_layout()

    plt.show()

def visualize_assembly_stages(target: PrecursorTarget):

    """ASCII visualization of the SOMS-CS pipeline."""

    print(f"\n[ASCII] Chemically-Enhanced Skyrmion-Optics Cyclization Stages for {target.name}")

    print("""

    +-----------------------------+

    | [Open-Chain Precursor Input]|

    +-----------------------------+

                |

                v

    +-----------------------------+

    | [CD Spectrum (Conformation)]|

    +-----------------------------+

                |

                v

    +-----------------------------+

    | [Metamaterial & Chemical Setup]|

    +-----------------------------+

                |

                v

    +-----------------------------+

    | [Skyrmion Field & Gate Setup]|

    +-----------------------------+

                |

                v

    +-----------------------------+

    | [TUNING: Chemical & Photonic]|

    +-----------------------------+

                |

                v

    +-----------------------------+

    | [Photochemical Cyclization] |

    +-----------------------------+

                |

                v

    +-----------------------------+

    | [Cyclized Chiral Product]   |

    +-----------------------------+

    """)

# -------------------------------

# Commentary

# -------------------------------

def commentary(target: PrecursorTarget, config: SkyrmionGateConfig, meta_params: MetamaterialParams,

               reaction_state: ReactionState, coupling_history: List[float], loss_history: List[float],

               efficiency_history: List[float], final_yield: float, final_ee: float):

    """Provides a summary of the synthesis run."""

   

    final_coupling = coupling_history[-1] if coupling_history else 0.0

    final_loss = loss_history[-1] if loss_history else 0.0

    final_efficiency = efficiency_history[-1] if efficiency_history else 0.0

   

    chem_influence = (coupling_history[-1] / (min(config.skyrmion_density / 8.0, 0.98) * (1.0 - abs(config.optical_polarization) * 0.1))) if coupling_history else 1.0

    print(f"\n⚛️ Chemically-Enhanced Skyrmion-Optics Synthesis Commentary: {target.name}")

    print(f"""

    The cyclization of '{target.name}' was optimally achieved by coupling the Skyrmion-Optics transport

    with a chemically pre-activated precursor state.

    Chemical Parameters:

    Final Catalyst Activity: {round(reaction_state.catalyst_activity, 3)} units

    Final Intermediate Stability: {round(reaction_state.intermediate_stability, 3)} units

    Calculated Chemical Influence Boost: {round(chem_influence, 3)}x

    Transport Metrics:

    Final Skyrmion Tunneling Efficiency: {round(final_efficiency, 3)}

    Achieved Optical Coupling Rate: {round(final_coupling, 3)}

    Observed Results:

    Cyclization Yield: {round(final_yield * 100, 1)}%

    Enantiomeric Excess (EE): {round(final_ee, 1)}%

    By tuning the chemical environment (Catalyst and Intermediate Stability), the electronic state

    of the precursor was modified, which reduced the photonic scattering barrier, effectively boosting

    the Skyrmion-mediated optical transport rate. This synergistic magnetochemical control led to

    supra-90% yield and high EE.

    """)

# -------------------------------

# Main Execution

# -------------------------------

def main():

    initialize_system()

    targets = [

        PrecursorTarget("Chiral Diene-1", "Diels-Alder Ring"),

        PrecursorTarget("Polyketide Core", "Macro-Lactam Ring"),

        PrecursorTarget("Prostaglandin Precursor", "Five-Membered Ring")

    ]

    for target in targets:

        # Note: The adaptive loop now returns 8 values

        results = adaptive_cyclization_loop(target)

        config, params, reaction_state, coupling_history, loss_history, efficiency_history, final_yield, final_ee = results

       

        visualize_assembly_stages(target)

        visualize_tunneling_dynamics(target, efficiency_history, reaction_state.intermediate_stability)

        commentary(target, config, params, reaction_state, coupling_history, loss_history, efficiency_history, final_yield, final_ee)

    print("[END] SOMS-CS v3.0 pipeline complete.")

if __name__ == "__main__":

    main()