Citations of Phys. Rev. A 83, 022302 (2011)

  1. Witnessing quantum entanglement in ensembles of nitrogen–vacancy centers coupled to a superconducting resonator, Yusef Maleki and Aleksei M. Zheltikov, Optics Express Vol. 26, Issue 14, pp. 17849-17858 (2018).
  2. Hua, M., Tao, MJ., Alsaedi, A. et al. Quantum Inf Process (2018) 17: 151.
  3. Natalia Teper, Thermal preparation of an entangled steady state of distant driven spin ensembles, AIP Conference Proceedings 1936, 020030 (2018);
  4. One-step implementation of a hybrid Fredkin gate with quantum memories and single superconducting qubit in circuit QED and its applications, Tong Liu, Bao-Qing Guo, Chang-Shui Yu, and Wei-Ning Zhang, Optics Express Vol. 26, Issue 4, pp. 4498-4511 (2018)
  5. Generating maximally-path-entangled number states in two spin ensembles coupled to a superconducting flux qubit, Yusef Maleki and Aleksei M. Zheltikov, Phys. Rev. A 97, 012312 (2018).
  6. Simulating the Lipkin-Meshkov-Glick model in a hybrid quantum system, Yuan Zhou, Sheng-Li Ma, Bo Li, Xiao-Xiao Li, Fu-Li Li, Peng-Bo Li, arXiv:1712.06234
  7. Many-Particle Entanglement Criterion for Superradiantlike States Mehmet Emre Tasgin Phys. Rev. Lett. 119, 033601 (2017).
  8. He X L, Yang C P. Transferring multiqubit entanglement onto memory qubits in a decoherence-free subspace[J]. Quantum Information Processing, 2017, 16(3): 67.
  9. Feng, Zhi-Bo, et al. "Tunable photon transmission through a waveguide cavity coupled to an electron spin ensemble." Laser Physics Letters 14.2 (2017): 025204.
  10. A quantum computer on the basis of an atomic quantum transistor with built-in quantum memory; Moiseev, S.A. & Andrianov, S.N. Opt. Spectrosc. (2016) 121: 886. doi:10.1134/S0030400X16120195
  11. Liu, T. et al. Generation of a macroscopic entangled coherent state using quantum memories in circuit QED. Sci. Rep. 6, 32004; doi: 10.1038/srep32004 (2016)
  12. Long-distance quantum information transfer with strong coupling hybrid solid system Feng-Yang Zhang, Xin-Yu Chen, Chong Li, and He-Shan Song; Sci Rep. 2015; 5: 17025
  13. Universal Distributed Quantum Computing on Superconducting Qutrits with Dark Photons, M. Hua, M. Tao, A. Alsaedi, T. Hayat, F. Deng, ANNALEN DER PHYSIK 2018, 1700402.
  14. Hua, al.One-step resonant controlled-phase gate on distant transmonqutrits in different 1D superconducting resonators.Sci. Rep.5, 14541; doi: 10.1038/srep14541 (2015).
  15. Title: Robust quantum state transfer between a Cooper-pair box and diamond nitrogen-vacancy centers; Author: Zhi-Bo Feng; Source: Phys. Rev. A 91, 032307 (2015).
  16. Title: Quantum information processing on nitrogen-vacancy ensembles with the local resonance assisted by circuit QED; Authors: Ming-Jie Tao, Ming Hua, Qing Ai, and Fu-Guo Deng; Source: arXiv:1503.02376
  17. Title: Two-mode squeezing generation in hybrid chains of superconducting resonators and nitrogen-vacancy-center ensembles; Source: Shengli Ma et al 2015 J. Phys. B: At. Mol. Opt. Phys. 48 035504
  18. Title: Quantum information transfer with hybrid NV center-photon qubit encoding, XQ Li, SL Ma, PB Li, SY Gao, HR Li, FL Li - Journal of Modern Optics, 2014 DOI: 10.1080/09500340.2014.986550
  19. Title: Generating a macroscopic W-type entangled coherent state of quantum memories in circuit QED; Authors: Tong Liu, Qi-Ping Su, Shao-Jie Xiong, Jin-Ming Liu, Chui-Ping Yang; Source: arXiv:1411.3102.
  20. Title: Photonic phase transition in circuit quantum electrodynamics lattices coupled to superconducting phase qubits; Authors: LIU YiMin, JIN WuYin & YOU JiaBin; Source: SCIENCE CHINA Physics, Mechanics & Astronomy; doi: 10.1007/s11433-014-5591-1
  21. Jian Zhou, Yong Hu, Zhang-qi Yin, Z. D. Wang, Shi-Liang Zhu, and Zheng-Yuan Xue, “High fidelity quantum state transfer in electromechanical system with intermediate coupling”, Sci. Rep.4, 6237; DOI:10.1038/srep06237 (2014).
  22. Title: Spin Ensembles Coupled to Superconducting Resonators: A Scalable Architecture for Solid-State Quantum Computing; CHEN Chang-Yong (陈昌永),1;2;3;y HOU Qi-Zhe (侯其哲),2 and LI Shao-Hua (李韶华; Source: Commun. Theor. Phys. 62 (2014) 196-204
  23. 马胜利, & 李蓬勃. (2014). 基于超导谐振腔和 NV 色心系综混合体系的纠缠复制.
  24. Title: Complete determination of the orientation of NV centers with radially polarized beams  Philip R. Dolan, Xiangping Li, Jelle Storteboom, and Min Gu, Source: Optics Express, Vol. 22, Issue 4, pp. 4379-4387 (2014).
  25. Title: Geometry optimization for application of radio frequency signals on diamond samples; Authors: Ricardo R. Wolf Cruz; Marlio J. C. Bonfim; Wilson A. Artuzi Junior; J. Microw. Optoelectron. Electromagn. Appl. vol.12 no.2 São Caetano do Sul Dec. 2013
  26. Zhang-qi Yin, Zhen-biao Yang, (邀请综述), “Distributed quantum information processing in coupled cavity QED systems”, 安徽大学学报(自然科学版),2014 年1 月第38 卷第1 期第1-11页.
  27. Title: KVANTOVAYa PAMYaT' NA ANSAMBLEVYKh SOSTOYaNIYaKh NV-TsENTROV V ALMAZE; Author: A. V. Tsukanov; Source: Mikroelektronika, volume 42, № 3, 2013, page 163-185
  28. Title: Producing GHZ state of nitrogen-vacancy centers in cavity QED; Authors: Zheng-Yuan Xue, Sheng Liu; Source: arXiv:1304.0271
  29. Title: Spin observables in an atomic CQE system; O Civitarese, M Reboiro, and D Tielas; Source: 2013 J. Phys. B: At. Mol. Opt. Phys. 46 065502
  30. Title: Non-Geometric Conditional Phase Gate by Quantum Zeno Dynamics in Laser-Excited Nitrogen-Vacancy Centers; Authors: SU Wan-Jun, SHEN Li-Tuo, WU Huai-Zhi, LIN Xiu; Source: Communications in Theoretical Physics 2013, 59(01) 11-16.
  31. Title: NV centers in diamond. Part III: Quantum algorithms, scaling, and hybrid systems; Authors: A. V. Tsukanov; Source:  Russian Microelectronics January 2013, Volume 42, Issue 1, pp 1-15
  32. Title: Scheme for realizing quantum-information storage and retrieval from quantum memory based on nitrogen-vacancy centers; Authors: Yu-Jing Zhao, Xi-Ming Fang, Fang Zhou, and Ke-Hui Song; Source: Phys. Rev. A 86, 052325 (2012).
  33. Title: Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems; Authors: Xiang, Ze-Liang, Ashhab, Sahel; You, J. Q.; Nori, Franco. Source: arXiv:1204.2137, RMP in press.
  34. Title: Generation of macroscopic entangled coherent states for distant ensembles of polar molecules via effective coupling to a superconducting charge qubit; Author: Chen, Qiong and Yang, Wanli and Feng, Mang; Source: Phys. Rev. A 86, 045801 (2012).
  35. Title: Controllable quantum state transfer and entanglement generation between distant nitrogen-vacancy-center ensembles coupled to superconducting flux qubits; Authors: Qiong Chen, W. L. Yang, Mang Feng; Source: Phys. Rev. A 86, 022327 (2012).
  36. Title: Engineering two-mode entangled states between two superconducting resonators by dissipation; Authors: Peng-Bo Li, Shao-Yan Gao, Fu-Li Li; Authors: Phys. Rev. A 86, 012318 (2012); Source: Phys. Rev. A 86, 012318 (2012), arXiv:1205.4873.
  37. Title: Engineering two-mode continuous-variable entangled states of distant atomic spin ensembles with superconducting quantum circuits; Authors: Peng-Bo Li, Shao-Yan Gao, and Fu-Li Li ; Source: Phys. Rev. A 85, 014303 (2012)
  38. Title: An Effective Heisenberg Spin Chain in a Fiber-Cavity System; Authors: ZHONG Zhi-Rong, ZHANG Bin, LIN Xiu, SU Wan-Jun; Source: Chinese Physics Letters  2011 28 (12): 120303.
  39. W. L. Yang*, Z. Q. Yin*, C. Y. Chen, M. Feng*, "Two-mode squeezing of separated nitrogen-vacancy-center ensembles coupled with transmission line resonators", Phys. Rev. A 85, 022324 (2012).
  40. W. L. Yang, Z. X. Chen, Z. Q. Yin, M. Feng, and C. H. Oh, "Quantum simulation of artificial Abelian gauge field using nitrogen-vacancy center ensembles coupled with superconducting resonators", arXiv:1204.1778.
  41. Title: All-optical quantum computing with a hybrid solid-state processing unit; Authors: Pei Pei, Feng-Yang Zhang, Chong Li; Source: PHYSICAL REVIEW A 84, 042339 (2011), arXiv:1106.0140;
  42. Title: High-fidelity quantum memory using nitrogen-vacancy center ensemble for hybrid quantum computation; Authors: W. L. Yang, Z. Q. Yin, Y. Hu, M. Feng, and J. F. Du; Source: Phys. Rev. A 84, 010301(R) (2011),