CS61A                 Summer 2011                 Lab 2

This lab introduces a new special form, lambda.

 

1. Type each of the following into Scheme, and note the results.  See when you can predict  the results before letting Scheme do the computation.

(lambda (x) (+ x 3) )

( (lambda (x) (+ x 3)) 7)

You can think of lambda as meaning  “the function of...,” e.g., “the function of x that returns (+ x 3).

 

(define (make-adder num) (lambda (x) (+ x num) ) )

 

((make-adder 3) 7)

 

(define plus3 (make-adder 3) )

(plus3 7)

(define (square x) (* x x) )

 

(square 5)

 

(define sq (lambda (x) (* x x) ))  

(sq 5)

(define (try f) (f 3 5) ) (try +)

(try word)

 

2. Write a procedure  substitute that takes three arguments: a sentence, an old word, and a new word.  It should return a copy of the sentence, but with every occurrence  of the old word replaced  by the new word. For example:

> (substitute ’(she loves you yeah yeah yeah) ’yeah ’maybe)

(she loves you maybe maybe maybe)

 

 

3. Consider  a Scheme function g for which the expression

 ( ( g ) 1)

 

returns the value 3 when evaluated.  Determine how many  arguments g has.  In one word, also describe as best you can the type of value returned by g.

Continued on next page...

Lab 2 continued...

4.  For  each of the following expressions,  what  must  f be in order  for the evaluation  of the expression  to succeed,  without  causing  an  error?   For  each  expression,  give a  definition  of f such  that evaluating  the expression will not cause an error, and say what the expression’s value will be, given your definition.

f

( f )

(f 3)

( ( f ) )

( ( ( f ) ) 3)

 

 

5. Find  the values of the expressions

 

( (t 1+) 0)                          ( (t (t 1+) ) 0)                          ( ( (t t) 1+) 0)

 

where 1+ is a primitive procedure  that adds 1 to its argument, and t is defined as follows:

 

(define (t f)

(lambda (x) (f (f (f x) ) ) )  )

 

Work this out yourself before you try it on the computer!

 

6. Find  the values of the expressions

 

( (t s) 0)                           ( (t (t s) ) 0)                           ( ( (t t) s) 0)

 

where t is defined as in question 5 above, and s is defined as follows:

 

(define         (s x)

(+ 1 x) )

 

 

7. Write and test the make-tester procedure.  Given a word w as argument, make-tester returns a procedure of one argument x that returns true if x is equal to w and false otherwise.  Examples:

> ( (make-tester ’hal) ’hal)

#t

> ( (make-tester ’hal) ’cs61a)

#f

> (define sicp-author-and-astronomer? (make-tester ’gerry) )

> (sicp-author-and-astronomer? ’hal)

#f

> (sicp-author-and-astronomer? ’gerry)

#t