PREFACE
Engineers are the makers of modern world. Twentieth century is engineering terms is nothing but the age of computer science. It is very necessary for a computer engineer to get acquainted with the new technologies.
This report has been prepared by the student undergoing B.E., University of Rajasthan, Global Institute of Technology, Sitapura, Jaipur. The report contains details regarding Biometrics.
While preparing the report I have faced some problems which were difficult for me to handle. But still with my great efforts I have tackled them very carefully.
This report is a very comprehensive one and is very simple and easy to follow.
The history of SQL
California in the early 1970’s. The aim of the project was to develop an experimental RDBMS which would eventually lead to a marketable product. At that time, there was a lot of interest in the relational model for databases at the academic level, in conferences and seminars. IBM, which already had a large share of the commercial database market with hierarchical and network model DBMSs, realized quite quickly that the relational model would figure prominently in future database products. The project at IBM's San Jose labs was started in 1974 and was named System R. A language called Sequel (for Structured English Query Language) was chosen as the relational database language for System R. In the project, Sequel was abbreviated to SQL. This is the reason why SQL is still generally pronounced as see-quel. In the first phase of the System R project, researchers concentrated on developing a basic version of the RDBMS. The main aim at this stage was to verify that the theories of the relational model could be translated into a working, commercially viable product. This first phase was successfully completed by the end of 1975, and resulted in a rudimentary, single-user DBMS based on the relational model. The subsequent phases of System R concentrated on further developing the DBMS from the first phase. Additional features were added, multi-user capability was implemented, and by 1978, a completed RDBMS was ready for user evaluation. The System R project was finally completed in 1979. During this time, the SQL language was modified and added to as the needs of the System R DBMS dictated. The theoretical work of the System R project resulted in the development and release in 1981 of IBM's first commercial relational database management system. The product was called SQL/DS and ran under the DOS/VSE operating system environment. Two years later, IBM announced a version of SQL/DS for the VM/CMS operating system. In 1983, IBM released a second SQL based RDBMS called DB2, which ran under the MVS operating system. DB2 quickly gained widespread popularity and even today, versions of DB2 form the basis of many database systems found in large corporate data-centers.
During the development of System R and SQL/DS, other companies were also at work creating their own relational database management systems. Some of them, Oracle being a prime example, even implemented SQL as the relational database language for their DBMSs concurrently with IBM. Today, the SQL language has gained ANSI (American National Standards Institute) and ISO (International Standards Organization) certification. A version of SQL is available for almost any hardware platform from CRAY supercomputers to IBM PC microcomputers. In recent years, there has been a marked trend for software manufacturers to move away from proprietary database languages and settle on the SQL standard. The microcomputer platform especially has seen a proliferation of previously proprietary packages that have implemented SQL functionality. Even spreadsheet and word processing packages have added options which allow data to be sent to and retrieved from SQL based databases via a Local Area or a Wide Area network connection. The Structured Query Language, SQL is a query language which is used with relational databases.
A Collection of Databases and Database Management Systems
Let's start from basics. What is a database? In very general terms, a database is a collection of related data. Notice the word related, this implies that the collection of letters on this page do not by themselves constitute a database. But if we think of them as a collection of letters arranged to form words, then they can be conceptualised as data in a database. Using similar reasoning, we can also say that a tome such as a telephone directory is also a database. It is a database first, because it is a collection of letters that form words and second, because it is an alphabetical listing of people's names, their addresses and their telephone numbers. How we think of a database depends on what use we want to make of the information that it contains. So far, we have talked about a database in it's broadest sense. This very general definition is not what most people mean when they talk about a database. In this electronic age, the word database has become synonymous with the term "computerised database". Collins English Dictionary describes a database as "A store of a large amount of information, esp. in a form that can be handled by a computer." In this book, we will be dealing only with computerised databases. In keeping with popular trend though, we will be using the word database to refer to a computerised database.
A database (computerised database remember) by itself, is not much use. The data is stored electronically on the computer's disk in a format which we humans cannot read or understand directly. What we need is some way of accessing this data and converting it into a form which we do understand. This is the job of the database management system or DBMS for short. A DBMS is essentially a suite of programs that act as the interface between the human operator and the data held in the database. Using the DBMS, it is possible to retrieve useful information, update or delete obsolete information and add new information to the database. As well as data entry and retrieval, the DBMS plays an important role in maintaining the overall integrity of the data in the database. The simplest example of is ensuring that the values entered into the database conform to the data types that are specified. For example, in the telephone book database, the DBMS might have to ensure that each phone number entered conforms to a set format of XXX-XXXXXXX where X represents an integer.
The Database as a Collection of Tables
Relational databases and SQL:-
In the early days of computerised databases, all large database systems conformed to either the network data model or the hierarchical data model. We will not be discussing the technical details of these models except to say that they are quite complex and not very flexible. One of the main drawbacks of these databases was that in order to retrieve information, the user had to have an idea of where in the database the data was stored. This meant that data processing and information retrieval was a technical job which was beyond the ability of the average office manager. In those days life was simple. data processing staff were expected to prepared the annual or monthly or weekly reports and managers were expected to formulate and implement day to day business strategy according to the information contained in the reports. Computer literate executives were rare and DP staff with business sense were even more rare. This was the state of affairs before the advent of relational databases.
The relational data model was introduced in 1970, E. F. Codd, a research fellow working for IBM, in his article `A Relational Model of Data for Large Shared Databanks'. The relational database model represented the database as a collection of tables which related to one another.
Unlike network and hierarchical databases, the relational database is quite intuitive to use, with data organised into tables, columns and rows. An example of a relational database table is shown in Figure 1.1. We can see just by looking at Figure 1.1 what the table is. The table is a list of people's names and telephone numbers. It is similar to how we might go about the task of jotting down the phone numbers of some of our friends, in the back of our diary for example.
The relational data model consists of a number of intuitive concepts for storing any type of data in a database, along with a number of functions to manipulate the information.
NUM | SURNAME | FIRSTNAME | PHONE_NUMBER |
1 | Jones | Frank | 9635 |
2 | Bates | Norman | 8313 |
3 | Clark | Brian | 2917 |
4 | Stonehouse | Mark | 3692 |
5 | Warwick | Rita | 3487 |
Figure 1.1
The relational data model as proposed by Codd provided the basic concepts for a new database management system, the relational database management system (RDBMS). Soon after the relational model was defined, a number of relational database languages were developed and used for instructing the RDBMS. Structured Query Language being one of them.
The SQL language is so inextricably tied to relational database theory that it is impossible to discuss it without also discussing the relational data model. The next two sections briefly describe some of the concepts of this model.
Tables, columns and rows.
We have already seen that a relational database stores data in tables. Each column of the table represent an attribute, SURNAME, FIRSTNAME, PHONE_NUMBER for example. Each row in the table is a record. In the table in Figure 1.1, each row is a record of one person. A single table with a column and row structure, does not represent a relational database. Technically, this is known as a flat file or card index type database. Relational databases have several tables with interrelating data. Suppose that the information in the table of Figure 1.1 is actually the list of people working in the company with their telephone extensions. Now we get an idea that this simple table is actually a small part of the overall database, the personnel database. Another table, such as the one in Figure 1.2. could contain additional details on the persons listed in the first table.
NUM | D_O_B | DEPT | GRADE |
2 | 12/10/63 | ENG | 4 |
5 | 07/05/50 | DESIGN | 7 |
3 | 03/11/45 | SALES | 9 |
1 | 09/03/73 | ENG | 2 |
Figure 1.2
The Primary key and the foreign Key
The two tables described in the previous section and shown in Figures 1.1 and 1.2, now constitute a relational database. Of course, in a real personnel database, you would need to store a great deal more information and would thus need a lot more related tables.
Notice that the first column in each table is the NUM column. The information stored in NUM does not really have anything to do with the person's record. Why is it there? The reason is that NUM is used to uniquely identify each person's record. We could have used the person's name, but chances are that in a large company, there would be more than one person with the same name. NUM is known as the primary key for the table of Figure 1.1. For the table of Figure 1.2, where a primary key of another table is used to relate data, NUM is a called a foreign key.
The primary keys and foreign keys are a very important part of relational databases. They are the fields that relate tables to each other. In the table of Figure 1.2 for example, we know that the first record is for Norman Bates because the value for NUM is 2 and we can see from the table of Figure 1.1 that this is Norman Bates' record.
Communicating to the DBMS what you want it to do
Introduction to the SQL language :-
The Structured Query Language is a relational database language. By itself, SQL does not make a DBMS. It is just a medium which is used to as a means of communicating to the DBMS what you want it to do. SQL commands consist of english like statements which are used to query, insert, update and delete data. What we mean by `english like', is that SQL commands resemble english language sentences in their construction and use. This does not mean that you can type in something like "Pull up the figures for last quarter's sales" and expect SQL to understand your request. What it does mean is that SQL is a lot easier to learn and understand than most of the other computer languages.
SQL is sometimes referred to as a non-procedural database language. What this means is that when you issue an SQL command to retrieve data from a database, you do not have to explicitly tell SQL where to look for the data. It is enough just to tell SQL what data you want to be retrieved. The DBMS will take care of locating the information in the database. This is very useful because it means that users do not need to have any knowledge of where the data is and how to get at it. Procedural languages such as COBOL or Pascal and even older databases based on the network and hierarchical data models require that users specify what data to retrieve and also how to get at it. Most large corporate databases are held on several different computers in different parts of the building or even at different geographic locations. In such situations, the non-procedural nature of SQL makes flexible, ad hoc querying and data retrieval possible. Users can construct and execute an SQL query, look at the data retrieved, and change the query if needed all in a spontaneous manner. To perform similar queries using a procedural language such as COBOL would mean that you would have to create, compile and run one computer programs for each query.
Commercial database management systems allow SQL to be used in two distinct ways. First, SQL commands can be typed at the command line directly. The DBMS interprets and processes the SQL commands immediately, and any result rows that are retrieved are displayed. This method of SQL processing is called interactive SQL. The second method is called programmatic SQL. Here, SQL statements are embedded in a host language such as COBOL or C. SQL needs a host language because SQL is not really a complete computer programming language as such. It has no statements or constructs that allow a program to branch or loop. The host language provides the necessary looping and branching structures and the interface with the user, while SQL provides the statements to communicate with the DBMS.
SQL (Structured Query Language) is a database computer language designed for the retrieval and management of data in relational database management systems (RDBMS), database schema creation and modification, and database object access control management. SQL is a querying language for querying and modifying data and managing databases. SQL was standardized first by the ANSI and later by the ISO. Most database management systems implement a majority of one of these standards and add their proprietary extensions. SQL allows the retrieval, insertion, updating, and deletion of data. A database management system also includes management and administrative functions. Most – if not all – implementations also include a command-line interface (SQL/CLI) that allows for the entry and execution of the language commands, as opposed to only providing an application programming interface (API) intended for access from a graphical user interface (GUI).SQL is an ANSI (American National Standards Institute) standard computer language for accessing and manipulating database systems. SQL statements are used to retrieve and update data in a database. SQL works with database programs like MS Access, DB2, Informix, MS SQL Server, Oracle, Sybase, etc.Unfortunately, there are many different versions of the SQL language, but to be in compliance with the ANSI standard, they must support the same major keywords in a similar manner (such as SELECT, UPDATE, DELETE, INSERT, WHERE, and others).
Queries
The most common operation in SQL databases is the query, which is performed with the declarative SELECT keyword. SELECT retrieves data from a specified table, multiple related tables in a database or the result of an expression. While often grouped with Data Manipulation Language (DML) statements, the standard SELECT query is considered separate from SQL DML, as it has no persistent effects on the data stored in a database. Note that there are some platform-specific variations of SELECT that can persist their effects in a database, such as the SELECT INTO syntax that exists in some databases.[17]
SQL queries allow the user to specify a description of the desired result set, but it is left to the devices of the database management system (DBMS) to plan, optimize, and perform the physical operations necessary to produce that result set in as efficient a manner as possible. An SQL query includes a list of columns to be included in the final result immediately following the SELECT keyword. An asterisk ("*") can also be used as a "wildcard" indicator to specify that all available columns of a table (or multiple tables) are to be returned. SELECT is the most complex statement in SQL, with several optional keywords and clauses, including:
The FROM clause which indicates the source table or tables from which the data is to be retrieved. The FROM clause can include optional JOIN clauses to join related tables to one another based on user-specified criteria.
The WHERE clause includes a comparison predicate, which is used to restrict the number of rows returned by the query. The WHERE clause is applied before the GROUP BY clause. The WHERE clause eliminates all rows from the result set where the comparison predicate does not evaluate to True.
The GROUP BY clause is used to combine, or group, rows with related values into elements of a smaller set of rows. GROUP BY is often used in conjunction with SQL aggregate functions or to eliminate duplicate rows from a result set.
The HAVING clause includes a comparison predicate used to eliminate rows after the GROUP BY clause is applied to the result set. Because it acts on the results of the GROUP BY clause, aggregate functions can be used in the HAVING clause predicate.
The ORDER BY clause is used to identify which columns are used to sort the resulting data, and in which order they should be sorted (options are ascending or descending). The order of rows returned by an SQL query is never guaranteed unless an ORDER BY clause is specified.
Example of SQL queries :-
The following is an example of a SELECT query that returns a list of expensive books. The query retrieves all rows from the Book table in which the price column contains a value greater than 100.00. The result is sorted in ascending order by title. The asterisk (*) in the select list indicates that all columns of the Book table should be included in the result set.
SELECT *
FROM Book
WHERE price > 100.00
ORDER BY title
The example below demonstrates the use of multiple tables in a join, grouping, and aggregation in an SQL query, by returning a list of books and the number of authors associated with each book.
SELECT Book.title,
count(*) AS Authors
FROM Book
JOIN Book_author ON Book.isbn = Book_author.isbn
GROUP BY Book.title
Example output might resemble the following:
Title Authors
---------------------- -------
SQL Examples and Guide 3
The Joy of SQL 1
How to use Wikipedia 2
Pitfalls of SQL 1
Define the different type of Content
1.Basics of the SELECT Statement :-
In a relational database, data is stored in tables. An example table would relate Social
Security Number, Name,and Address:
Now, let's say you want to see the address of each employee. Use the SELECT
statement, like so:
SELECT FirstName, LastName, Address, City, State
FROM EmployeeAddressTable
The following is the results of your query of the database:
To explain what you just did, you asked for the all of data in the EmployeeAddressTable, and specifically, you asked for the columns called FirstName, LastName, Address, City, and State. Note that column names and table names do not have spaces...they must be typed as one word; and that the statement ends with a semicolon (;). The general form for a SELECT statement, retrieving all of the rows in the table is:
SELECT ColumnName, ColumnName, ...
FROM TableName;
To get all columns of a table without typing all column names, use:
SELECT * FROM TableName;
Each database management system (DBMS) and database software has different methods for logging in to the database and entering SQL commands; see the local computer "guru" to help you get onto the system, so that you can use SQL.
2. Conditional Selection :-
To further discuss the SELECT statement, let's look at a new example table
3.Relational Operators :-
There are six Relational Operators in SQL, and after introducing them, we'll
The WHERE clause is used to specify that only certain rows of the table are displayed, based on the criteria described in that WHERE clause. It is most easily understood by looking at a couple of examples.
If you wanted to see the EMPLOYEEIDNO's of those making at or over $50,000, use the following:
SELECT EMPLOYEEIDNO
FROM EMPLOYEESTATISTICSTABLE
WHERE SALARY >= 50000;
Notice that the >= (greater than or equal to) sign is used, as we wanted to see those who made greater than $50,000, or equal to $50,000, listed together. This displays:
EMPLOYEEIDNO
------------
010
105
152
215
244
The WHERE description, SALARY >= 50000, is known as a condition (an operation which evaluates to True or False). The same can be done for text columns:
SELECT EMPLOYEEIDNO
FROM EMPLOYEESTATISTICSTABLE
WHERE POSITION = 'Manager';
This displays the ID Numbers of all Managers. Generally, with text columns, stick to equal to or not equal to,and make sure that any text that appears in the statement is surrounded by single quotes ('). Note: Position is now an illegal identifier because it is now an unused, but reserved, keyword in the SQL-92 standard.More Complex Conditions: Compound Conditions / Logical Operators The AND operator joins two or more conditions, and displays a row only if that row's data satisfies
ALL conditions listed (i.e. all conditions hold true). For example, to display all staff making over $40,000, use:
SELECT EMPLOYEEIDNO
FROM EMPLOYEESTATISTICSTABLE
WHERE SALARY > 40000 AND POSITION = 'Staff';
The OR operator joins two or more conditions, but returns a row if ANY of the conditions listed hold true. To see all those who make less than $40,000 or have less than $10,000 in benefits, listed together, use the following query:
SELECT EMPLOYEEIDNO
FROM EMPLOYEESTATISTICSTABLE
WHERE SALARY < 40000 OR BENEFITS < 10000;
AND & OR can be combined, for example:
SELECT EMPLOYEEIDNO
FROM EMPLOYEESTATISTICSTABLE
WHERE POSITION = 'Manager' AND SALARY > 60000 OR BENEFITS > 12000;
First, SQL finds the rows where the salary is greater than $60,000 and the position column is equal to Manager,then taking this new list of rows, SQL then sees if any of these rows satisfies the previous AND condition or the condition that the Benefits column is greater than $12,000. Subsequently, SQL only displays this second new list
of rows, keeping in mind that anyone with Benefits over $12,000 will be included as the OR operator includes arow if either resulting condition is True. Also note that the AND operation is done first. To generalize this process, SQL performs the AND operation(s) to determine the rows where the AND operation(s) hold true (remember: all of the conditions are true), then these results are used to compare with the OR conditions, and only display those remaining rows where any of the conditions joined by the OR operator hold true (where a condition or result from an AND is paired with another condition or AND result to use to evaluate the OR, which evaluates to true if either value is true). Mathematically, SQL evaluates all of theconditions, then evaluates the AND "pairs", and then evaluates the OR's (where both operators evaluate left toright).To look at an example, for a given row for which the DBMS is evaluating the SQL statement Where clause to determine whether to include the row in the query result (the whole Where clause evaluates to True), the DBMS has evaluated all of the conditions, and is ready to do the logical comparisons on this result:
True AND False OR True AND True OR False AND False
First simplify the AND pairs:
False OR True OR False
Now do the OR's, left to right:
True OR False
True
The result is True, and the row passes the query conditions. Be sure to see the next section on NOT's, and the order of logical operations. I hope that this section has helped you understand AND's or OR's, as it's a difficult subject to explain briefly.
To perform OR's before AND's, like if you wanted to see a list of employees making a large salary ($50,000) or have a large benefit package ($10,000), and that happen to be a manager, use parentheses:
SELECT EMPLOYEEIDNO
FROM EMPLOYEESTATISTICSTABLE
WHERE POSITION = 'Manager' AND (SALARY > 50000 OR BENEFITS > 10000);
4. IN & BETWEEN :-
An easier method of using compound conditions uses IN or BETWEEN. For example, if you wanted to list all managers and staff:
SELECT EMPLOYEEIDNO
FROM EMPLOYEESTATISTICSTABLE
WHERE POSITION IN ('Manager', 'Staff');
or to list those making greater than or equal to $30,000, but less than or equal to $50,000, use:
SELECT EMPLOYEEIDNO
FROM EMPLOYEESTATISTICSTABLE
WHERE SALARY BETWEEN 30000 AND 50000;
To list everyone not in this range, try:
SELECT EMPLOYEEIDNO
FROM EMPLOYEESTATISTICSTABLE
WHERE SALARY NOT BETWEEN 30000 AND 50000;
Similarly, NOT IN lists all rows excluded from the IN list.
Additionally, NOT's can be thrown in with AND's & OR's, except that NOT is a unary operator (evaluates one condition, reversing its value, whereas, AND's & OR's evaluate two conditions), and that all NOT's are performed before any AND's or OR's.
SQL Order of Logical Operations (each operates from left to right)
1. NOT
2. AND
3. OR
5. Using LIKE :-
Look at the EmployeeStatisticsTable, and say you wanted to see all people whose last names started with "S" try:
SELECT EMPLOYEEIDNO
FROM EMPLOYEEADDRESSTABLE
WHERE LASTNAME LIKE 'S%';
The percent sign (%) is used to represent any possible character (number, letter, or punctuation) or set of characters that might appear after the "S". To find those people with LastName's ending in "S", use '%S', or if you wanted the "S" in the middle of the word, try '%S%'. The '%' can be used for any characters in the same position relative to the given characters. NOT LIKE displays rows not fitting the given description. Other
possibilities of using LIKE, or any of these discussed conditionals, are available, though it depends on what DBMS you are using; as usual, consult a manual or your system manager or administrator for the available features on your system, or just to make sure that what you are trying to do is available and allowed. This disclaimer holds for the features of SQL that will be discussed below. This section is just to give you an idea of
the possibilities of queries that can be written in SQL.
6. Joins :-
In this section, we will only discuss inner joins, and equijoins, as in general, they are the most useful. For more information, try the SQL links at the bottom of the page.
Good database design suggests that each table lists data only about a single entity, and detailed information can be obtained in a relational database, by using additional tables, and by using a join.
First, take a look at these example tables
Antiques
7. Keys :-
First, let's discuss the concept of keys. A primary key is a column or set of columns that uniquely identifies the rest of the data in any given row. For example, in the AntiqueOwners table, the OwnerID column uniquely identifies that row. This means two things: no two rows can have the same OwnerID, and, even if two ownershave the same first and last names, the OwnerID column ensures that the two owners will not be confused with each other, because the unique OwnerID column will be used throughout the database to track the owners, rather than the names.
A foreign key is a column in a table where that column is a primary key of another table, which means that any data in a foreign key column must have corresponding data in the other table where that column is the primary key. In DBMS-speak, this correspondence is known as referential integrity. For example, in the Antiques table, both the BuyerID and SellerID are foreign keys to the primary key of the AntiqueOwners table (OwnerID; for purposes of argument, one has to be an Antique Owner before one can buy or sell any items), as, in both tables, the ID rows are used to identify the owners or buyers and sellers, and that the OwnerID is the primary key of the AntiqueOwners table. In other words, all of this "ID" data is used to refer to the owners, buyers, or sellers of antiques, themselves, without having to use the actual names.
8. Performing a Join :-
The purpose of these keys is so that data can be related across tables, without having to repeat data in every table--this is the power of relational databases. For example, you can find the names of those who bought a chair without having to list the full name of the buyer in the Antiques table...you can get the name by relating those who bought a chair with the names in the AntiqueOwners table through the use of the OwnerID, which relates the data in the two tables. To find the names of those who bought a chair, use the following query:
SELECT OWNERLASTNAME, OWNERFIRSTNAME
FROM ANTIQUEOWNERS, ANTIQUES
WHERE BUYERID = OWNERID AND ITEM = 'Chair';
Note the following about this query...notice that both tables involved in the relation are listed in the FROM clause of the statement. In the WHERE clause, first notice that the ITEM = 'Chair' part restricts the listing to those who have bought (and in this example, thereby own) a chair. Secondly, notice how the ID columns are related from one table to the next by use of the BUYERID = OWNERID clause. Only where ID's match across
tables and the item purchased is a chair (because of the AND), will the names from the AntiqueOwners table be listed. Because the joining condition used an equal sign, this join is called an equijoin. The result of this query is two names: Smith, Bob & Fowler, Sam.
Dot notation refers to prefixing the table names to column names, to avoid ambiguity, as follows:
SELECT ANTIQUEOWNERS.OWNERLASTNAME, ANTIQUEOWNERS.OWNERFIRSTNAME
FROM ANTIQUEOWNERS, ANTIQUES
WHERE ANTIQUES.BUYERID = ANTIQUEOWNERS.OWNERID AND ANTIQUES.ITEM = 'Chair';
As the column names are different in each table, however, this wasn't necessary.
9. DISTINCT and Eliminating Duplicates :-
Let's say that you want to list the ID and names of only those people who have sold an antique. Obviously, you want a list where each seller is only listed once--you don't want to know how many antiques a person sold, just the fact that this person sold one (for counts, see the Aggregate Function section below). This means that you will need to tell SQL to eliminate duplicate sales rows, and just list each person only once. To do this, use the DISTINCT keyword. First, we will need an equijoin to the AntiqueOwners table to get the detail data of the person's LastName and FirstName. However, keep in mind that since the SellerID column in the Antiques table is a foreign key to the AntiqueOwners table, a seller will only be listed if there is a row in the AntiqueOwners table listing the ID and names. We also want to eliminate multiple occurrences of the SellerID in our listing, so we use DISTINCT on the column where the repeats may occur (however, it is generally not necessary to strictly put the Distinct in front of the column name).
To throw in one more twist, we will also want the list alphabetized by LastName, then by FirstName (on a LastName tie). Thus, we will use the ORDER BY clause:
SELECT DISTINCT SELLERID, OWNERLASTNAME, OWNERFIRSTNAME
FROM ANTIQUES, ANTIQUEOWNERS
WHERE SELLERID = OWNERID
ORDER BY OWNERLASTNAME, OWNERFIRSTNAME;
In this example, since everyone has sold an item, we will get a listing of all of the owners, in alphabetical order by last name. For future reference (and in case anyone asks), this type of join is considered to be in the category of inner joins.
10. Aliases & In/Subqueries :-
In this section, we will talk about Aliases, In and the use of subqueries, and how these can be used in a 3-table example. First, look at this query which prints the last name of those owners who have placed an order and what the order is, only listing those orders which can be filled (that is, there is a buyer who owns that ordered item):
SELECT OWN.OWNERLASTNAME Last Name, ORD.ITEMDESIRED Item Ordered
FROM ORDERS ORD, ANTIQUEOWNERS OWN
WHERE ORD.OWNERID = OWN.OWNERID
AND ORD.ITEMDESIRED IN
(SELECT ITEM
FROM ANTIQUES);
This gives:
Last Name Item Ordered
--------- ------------
Smith Table
Smith Desk
Akins Chair
Lawson M
There are several things to note about this query:
1. First, the "Last Name" and "Item Ordered" in the Select lines gives the headers on the report.
2. The OWN & ORD are aliases; these are new names for the two tables listed in the FROM clause that are used as prefixes for all dot notations of column names in the query (see above). This eliminates ambiguity, especially in the equijoin WHERE clause where both tables have the column named OwnerID, and the dot notation tells SQL that we are talking about two different OwnerID's from the two different tables.
3. Note that the Orders table is listed first in the FROM clause; this makes sure listing is done off of that table, and the AntiqueOwners table is only used for the detail information (Last Name).
4. Most importantly, the AND in the WHERE clause forces the In Subquery to be invoked ("= ANY" or "= SOME" are two equivalent uses of IN). What this does is, the subquery is performed, returning all of the Items owned from the Antiques table, as there is no WHERE clause. Then, for a row from the Orders table to be listed, the ItemDesired must be in that returned list of Items owned from the Antiques table, thus listing an item only if the order can be filled from another owner. You can think of it this way: the subquery returns a set of Items from which each ItemDesired in the Orders table is compared; the In condition is true only if the ItemDesired is in that returned set from the Antiques table.
5. Also notice, that in this case, that there happened to be an antique available for each oneb desired...obviously, that won't always be the case. In addition, notice that when the IN, "= ANY", or "= SOME" is used, that these keywords refer to any possible row matches, not column matches...that is, you cannot put multiple columns in the subquery Select clause, in an attempt to match the column in the outer Where clause to one of multiple possible column values in the subquery; only one column can be listed in the subquery, and the possible match comes from multiple row values in that one column, not vice-versa.
Miscellaneous SQL Statements
I will discuss five important aggregate functions: SUM, AVG, MAX, MIN, and COUNT. They are called aggregate functions because they summarize the results of a query, rather than listing all of the rows.
SUM ( ) gives the total of all the rows, satisfying any conditions, of the given column, where the given column is numeric.
AVG ( ) gives the average of the given column.
MAX ( ) gives the largest figure in the given column.
MIN ( ) gives the smallest figure in the given column.
COUNT(*) gives the number of rows satisfying the conditions.
Looking at the tables at the top of the document, let's look at three examples:
SELECT SUM(SALARY), AVG(SALARY)
FROM EMPLOYEESTATISTICSTABLE;
This query shows the total of all salaries in the table, and the average salary of all of the entries in the table.
SELECT MIN(BENEFITS)
FROM EMPLOYEESTATISTICSTABLE
WHERE POSITION = 'Manager';
This query gives the smallest figure of the Benefits column, of the employees who are Managers, which is 12500.
SELECT COUNT(*)
FROM EMPLOYEESTATISTICSTABLE
WHERE POSITION = 'Staff';
This query tells you how many employees have Staff status (3).
2. Views :-
In SQL, you might (check your DBA) have access to create views for yourself. What a view does is to allow you to assign the results of a query to a new, personal table, that you can use in other queries, where this new table is given the view name in your FROM clause. When you access a view, the query that is defined in your view creation statement is performed (generally), and the results of that query look just like another table in the query that you wrote invoking the view. For example, to create a view:
CREATE VIEW ANTVIEW AS SELECT ITEMDESIRED FROM ORDERS;
Now, write a query using this view as a table, where the table is just a listing of all Items Desired from the Orders table:
SELECT SELLERID
FROM ANTIQUES, ANTVIEW
WHERE ITEMDESIRED = ITEM;
This query shows all SellerID's from the Antiques table where the Item in that table happens to appear in the Antview view, which is just all of the Items Desired in the Orders table. The listing is generated by going through the Antique Items one-by-one until there's a match with the Antview view. Views can be used to restrict database access, as well as, in this case, simplify a complex query.
3. Creating New Tables :-
All tables within a database must be created at some point in time...let's see how we would create the Orderstable:
CREATE TABLE ORDERS
(OWNERID INTEGER NOT NULL,
ITEMDESIRED CHAR(40) NOT NULL);
This statement gives the table name and tells the DBMS about each column in the table. Please note that this statement uses generic data types, and that the data types might be different, depending on what DBMS you are using. As usual, check local listings. Some common generic data types are:
Char(x) - A column of characters, where x is a number designating the maximum
number of characters allowed (maximum length) in the column.
Integer - A column of whole numbers, positive or negative.
Decimal(x, y) - A column of decimal numbers, where x is the maximum length in digits of the decimal numbers in this column, and y is the maximum number of digits allowed after the decimal point. The maximum (4,2) number would be 99.99.
Date - A date column in a DBMS-specific format.
Logical - A column that can hold only two values: TRUE or FALSE.
One other note, the NOT NULL means that the column must have a value in each row. If NULL was used, that column may be left empty in a given row.
4. Altering Tables :-
Let's add a column to the Antiques table to allow the entry of the price of a given Item (Parentheses optional):
ALTER TABLE ANTIQUES ADD (PRICE DECIMAL(8,2) NULL);
The data for this new column can be updated or inserted as shown later. Adding Data To insert rows into a table, do the following:
INSERT INTO ANTIQUES VALUES (21, 01, 'Ottoman', 200.00);
This inserts the data into the table, as a new row, column-by-column, in the pre-defined order. Instead, let's change the order and leave Price blank:
INSERT INTO ANTIQUES (BUYERID, SELLERID, ITEM)
VALUES (01, 21, 'Ottoman');
5. Deleting Data :-
Let's delete this new row back out of the database:
DELETE FROM ANTIQUES
WHERE ITEM = 'Ottoman';
But if there is another row that contains 'Ottoman', that row will be deleted also. Let's delete all rows (one, in this case) that contain the specific data we added before:
DELETE FROM ANTIQUES
WHERE ITEM = 'Ottoman' AND BUYERID = 01 AND SELLERID = 21;
6. Updating Data :-
Let's update a Price into a row that doesn't have a price listed yet:
UPDATE ANTIQUES SET PRICE = 500.00 WHERE ITEM = 'Chair';
This sets all Chair's Prices to 500.00. As shown above, more WHERE conditionals, using AND, must be used to limit the updating to more specific rows. Also, additional columns may be set by separating equal statements with commas.
BIBLOGRAPHY
3