
 

 
 
 

ICS 535: Design and Implementaion of  
Programming Languages 

Semester 111 
 

Project Report 
 
 

A CUDA C Implementation of a  
Parallel Parser for RNA Secondary Structures 

based on Bison-generated GLR Parser  
 

​
 

 
 

By: 
Omar Alzuhaibi 

 
 

Supervisor: 
Dr. M.S. Al-Mulhem 

 
14 January, 2012 

 



Pretext 
​
This report is a record detailing my personal experience working with CUDA in 
implementing the algorithm in [2] in parallel. My aim of this project revolves totally 
around the need for a multiprocessing workbench for this specific type of problems, 
i.e., parsing RNA secondary structures. ​
​
Therefore, the reader’s expectation of this report should be confined within the subject 
of feasibility of multiprocessing in RNA problems. 

 

The source code can be found on sf.net/projects/cudaswallow or 
github.com/omarzd/CudaSwallow 

 

To download a PDF version of this report, click here.​
 

http://sf.net/projects/cudaswallow
https://github.com/omarzd/CudaSwallow
https://docs.google.com/document/export?format=pdf&id=1iHpUBOPMwvJrWQHLHhUPHmU2t5KVieq25KItU-UbMpM


1 Introduction 

1.1 Parsing Problem 
Parsing has been used to syntactically analyze programming languages. Usually, parsing 
programming languages is deterministic, i.e., there exists exactly one valid way to 
syntactically interpret the input. In this project, non-deterministic parsing is used as 
means to predicting RNA secondary structures. In non-deterministic parsing, more 
than one syntactic interpretation is valid. This is where this project comes in. The many 
different possible interpretations, called parses, each of which produces a parse tree, 
are computed in parallel using the CUDA environment. 

 



2 . Algorithm 

2.1 The Original Algorithm 
Following is the algorithm exactly as in [2]: 



 

2.2 Relation to the GLR Parser 
The algorithm in 2.1 is very similar to the well-known bottom-up GLR parser. This 
section will explain GLR based on LALR and why it is not quite suitable for our 



application.​
​
A Generalized LR (GLR) parser functions exactly like a Look-Ahead LR (LALR) parser. 
However, when it encounters a conflict due to ambiguity in the grammar, it essentially 
divides into multiple parses according to the possible options at that point. It continues 
with all options in tandem. Along the way, most parses will fail due to encountering an 
unexpected token, which simply means they took the wrong option earlier. Eventually, 
assuming the input is syntactically valid, only one parse should survive; and that would 
be the correct parse of the input.​
​
GLR deals with ambiguity in a straightforward exact simple solution. However, even if a 
parse, upon conflict, happened to continue on with the right option, it would fail as 
soon as it faces a new conflict before the first is resolved. And that is perfect for 
parsing programming languages, because only one parse tree should be the correct 
one, i.e., the one intended by the programmer. On the other hand, for the case of RNA 
sequences, all successful parses are valid parse trees. This is why the algorithm 
described and implemented in [2] is slightly different from GLR in that a parse would 
divide and divide indefinitely every time it faces a conflict. 

2.3 Parallelization of the Algorithm 
There are many ways to write a parallel algorithm for this problem. Although this 
project implements the exact same algorithm in [2] without major modification, this 
subsection serves as an introduction to suggested solutions discussed in 5.3.  

Generally for parallelization, the technique is to examine the sequential algorithm, 
identify a task that has one or more extra dimensions embedded in it, i.e., a task that 
can be done in parallel; then find the parameters that would define the extra 
dimension(s), and transform the algorithm from a 1D sequence of commands into 2D or 
more, where every dimension contains a sequence and parameters completely 
independent from the others. This may sound too abstract, but the parallel algorithm 
itself is very simple. 

In fact, The algorithm proposed in [2] already utilizes a multi-threaded approach. For 
this project, the algorithm has been the same but the implementation added a 
multi-processing overhead caused by a very essential property of the CUDA 
architecture, i.e., CUDA cores cannot communicate with each other; this issue will be 
discussed in detail in 3.2-3.5. 

Unfortunately, the algorithm as it is has only one degree/dimension/level of 
parallelization. Since it is based on LR, it must traverse the whole input string 
sequentially, token by token. An alternative approach will be discussed in 5.3. 



2.4 Grammar 
The grammar used in [2], also shown in 3.1 as grammar 1, is definitely nondeterministic. 
A grammar is nondeterministic when, at any point of an input, no fixed number of 
look-ahead tokens would suffice to determine the next grammar rule to reduce by [3]. 
And this is the case for grammar 1. Therefore, even a LR(infinity) parser cannot parse 
such grammar. it must be parsed using a GLR-based parser. 

2.5 Time and Space Complexity 
The exact expression of time complexity depends upon the grammar and the input. 
Moreover, the approximate expression depends on the grammar. So, let us work out 
the worst case complexity. The worst case would be an infinitely ambiguous input, i.e., 
m valid actions can be taken in every state for every token. Call m the branching factor. 
Then, every parse would divide to m parses at every iteration. This means that the 
number of parses will be multiplied by m at every iteration. At the i-th iteration, there 
will be mi parses. Also, in the worst case, the number of iterations can reach double the 
size of the input n. Therefore, the time needed would be O(m2n). This case is not even 
realizable by any grammar because it does not account for error cases and failing 
parses! We need a more accurate analysis. But first, assume that we have a machine 
capable of running a maximum of m10 processes completely in parallel, i.e., its 
maximum capacity c of performing a linear-time run is an input of size 5, then for 

 , it would need constant time per iteration, since processing a parse at any given 𝑛 ≤ 5
iteration takes constant time. Then, the whole run would take 2Cn, where C is a 
constant representing the time a single shift or reduce operation would take. Suppose 
now we choose n = 6. Let m = 2 for simplicity. That would raise the number of parallel 
processes in the last two iterations to 211 and 212 respectively, but the machine is 
capable of running only 210 processes in parallel. So, it will sequentially run 2 times for 
the previous-to-last iteration and 4 times for the last iteration, i.e., the time for every 
iteration i is: 

  

and Generally, the time for one iteration is: 

 

In big-O notation: 



 

The machine's capacity c is calculated as follows: 

 

   

where N is the maximum number of processes that can run independently in parallel, 
in our case, the number of CUDA cores. 

Generally, for a machine capable of handling a maximum input of size c completely in 
parallel, the total time it takes is: 

  

 

In big-O notation: 

 

it is safe to assume that m, the branching factor, is around 2. The exact value is 
calculated by averaging the number of actions in every cell of the action table. Using 
the table used in this project, found in appendix B, the average value of m would 
evaluate to 2.318. So, for a machine with capacity c = 0, i.e., no parallel processing 
capability, the worst case complexity would be O(2.3n). 

This result is not unexpected. In fact it is perfectly coherent with [5] where it says that 
for such non-deterministic grammar, the parser would need, in the worst case, 
exponential time. 

The important thing to note here is the big jump from linear time to exponential time 
when the number of parses to process is more than the number of cores available; and 
that the number of cores needed to keep performance in linear time grows 



exponentially with respect to the input size. Therefore, it is not feasible to try and keep 
up with this algorithm's requirement. Instead, as explained in 2.3, a new dimension of 
parallelization must be introduced for this problem. Suggested solutions are discussed 
in 5.3. 

As for space complexity, the algorithm needs space to store stacks and parse trees. 
Again, in the worst case, O(mn) stacks are needed, each of which can hold up to 2n 
bytes. That is nearly O(n 2n) bytes in the worst case. The experimental results in 4.1 
show that throughout a whole run, the maximum number of active stacks at any one 
time is linearly proportional to the total number of parse trees generated; and is 
exponential with respect to the input size. 

The space needed to store parse trees is exactly the same number of times a shift or a 
reduce action has been taken, i.e., O(mn) in the worst case. 

In [5], a similar parsing problem is solved in O(n3) using O(n2) space. However, such a 
solution depends on splitting and merging functions, which are properties essential to 
the sequential implementation of GLR parsers, defined in a certain way that would limit 
possibilities, thereby killing some potential parses early on. This project's 
implementation depends on parsing in a totally non-deterministic fashion, boastfully 
examining all possibilities backed by the power of parallel processing, which, alone, 
proved not to be enough for an efficient solution. 

All the analysis done here is considering the worst case. The experimental results are in 
4.1-4.2. 



3. Implementation 

3.1 Tweaking the Grammar 
The grammar implemented in [2] is as follows: 
Rule No. Production Probability 

0 S’ → S 1 

1 S → LS 0.4 

2 S → ε 0.6 

3 L → a 0.18 

4 L → c 0.09 

5 L → g 0.1 

6 L → u 0.17 

7 L → aSu 0.07 

8 L → uSa 0.09 

9 L → cSg 0.14 

10 L → gSc 0.11 

11 L → gSu 0.02 

12 L → uSg 0.03 

Grammar 1: Grammar implemented in [2] 

There is a number of observations regarding this grammar.​
 
First, this grammar introduces a high degree of ambiguity and has no precedence rules. 
And as mentioned earlier, the goal is to output all possible parse trees. Therefore, it is 
not suitable to use traditional parser generators, such as Bison, that have been 
perfected for grammars of programming languages. The plan is to build a parser nearly 
from scratch and then generalize it into a parallel-parser generator that works with 
highly ambiguous grammars. ​
​
Second, Rule 1 is right-recursive making it less efficient for a LR implementation. To 
solve this, the rule was simply changed to left-recursive:​
1. S→ SL​
This does not affect what the grammar generates; It still generates the same set and 
carries the same probability values [1].​
​
Finally, the most important observation is that it includes a deadly rule, i.e., rule 
number 2; considering the empty string production would make the implementation 
more complicated and reduce performance[1]. Moreover, this rule is dangerous 
because its LHS, i.e., the nonterminal “S”, occurs in 6 out of 8 RHS’s, which makes these 
six rules, without the “S”, effectively part of the grammar, doubling the number of rules 
and doubling the size of the state space.​
​
In order to safely modify the grammar, consider the following. ‘S’ is a list of ‘L’s. Since 



we have stated that we do not need to generate the empty string, substituting epsilon 
in rule 1 would yield:​
S → SL​
S → L​
L → a | c | g | u​
L → au | ua | cg | gc | gu | ug​
L → aSu | uSa | cSg | gSc | gSu | uSg​
​
But since L is now completely equivalent to S, S can replace L in the rest of the rules.  
After applying all the modifications mentioned above and recalculating the 
probabilities according to equivalence, the resulting grammar will be as follows: 

 
Rule No. Production Probability 

0 S’ → S 1 

1 S → SS 0.6829 

2 S → a 0.0432 

3 S → c 0.0216 

4 S → g 0.024 

5 S → u 0.0408 

6 S → au 0.0130176 

7 S → ua 0.0158976 

8 S → cg 0.021024 

9 S → gc 0.016704 

10 S → gu 0.004512 

11 S → ug 0.005952 

12 S → aSu 0.0168 

13 S → uSa 0.0216 

14 S → cSg 0.0336 

15 S → gSc 0.0264 

16 S → gSu 0.0048 

17 S → uSg 0.0072 

Grammar 2: Modification of Grammar 1. Implemented in this project. 

This was transformed from the original grammar in [2] and the probabilities were 
recalculated by writing every rule of the new grammar in terms of rules of the original 
grammar as logical expressions; detailed expressions for every transition can be found 
in Appendix A. This new grammar is equivalent to the original one except that it does 
not generate the empty string, which is practically not necessary as explained before.  

 

 



3.2 Relevant information about CUDA 
Here we present information about CUDA relevant to 3.3-3.6.  Everything here is from 
[6] and [7]. 
CUDA organizes all parallel computations using abstractions, which are threads, blocks 
and grids. They represent a straightforward application of the single-program 
multiple-data  parallel-processing paradigm. Here are definitions of the abstractions: 

Thread: Simply, it is just an index for the execution of a kernel. The index of 
each thread can be used to access elements in an array. Threads are not used 
in the implementation of this project. 

Block: A group of threads. Unfortunately, we are not sure of the details of 
executing threads within a block. they might be executing concurrently or 
serially at any given time. But calling the _syncthreads() function in the 
kernel would stop a thread until all others in the block finish. The same can 
be said for blocks running in parallel. They can be synchronized but only 
from the host by calling CudaThreadSynchronize(). 

Grid: A group of blocks, can only be one-dimensional or two-dimensional. 

Regarding the distribution of computation of these components: 

Grid → GPU: A single GPU handles a single grid. 

Block → Core: A GPU chip contains multiple cores, each of which can handle 
one or more blocks in a grid. The opposite obviously is not the case, i.e., a 
single block would never be handled by multiple cores. 

Thread → SP: Each Core further divides into stream processors (SPs), each of 
which handles one or more threads in a block. 

There is also a hierarchy of memory: 

Global memory: It consists of a number of SDRAM chips on the graphics 
card, so that all blocks and all threads can access it. 

Texture cache: This memory is available inside all cores; it is like a cache; and 
it can copy data from the global memory. But threads running in the block 
assigned to a certain core can only read and not write to this memory. 

Constant cache: This is also a read-only memory inside each core. It is 
limited and must hard-coded in the code. 



Shared memory: This is an even smaller memory inside each core. It is a  fast 
read/write memory for all threads in the block assigned to that core. 

Registers: Registers are also inside cores and they are shared between 
threads. 

Of course, as you go higher in the memory hierarchy, you get larger, slower storage; 
and as you get lower, you get smaller faster storage. 

 



3.3 Tweaking the Algorithm for CUDA 
This project’s aim was to implement the same algorithm in [2] using CUDA. The 
problem is that parallel subprocesses, whether blocks or threads, in CUDA cannot 
communicate with each other, nor can they give commands to the CUDA device. So 
splitting up a subprocess into subprocesses upon detecting a conflict, as in step “create 
another thread” of the algorithm, is not possible with CUDA. All the thread 
management and memory management must be done on the CPU. 

For these reasons, the implementation does not exactly correspond to the algorithm, 
yet it does not deviate from it. Such case is not uncommon; it is especially evident 
when algorithms are implemented in multiple platforms. This can be seen more clearly 
in the following abstract pseudo-code: 
Function: main() 

Prepare Action[state][token] and Goto[state][non-terminal] tables 

Get #Actions; // (This is the Max # possible Actions per state per token, which 
is also equal to 1 + the Max # conflicts per state per token. It is extracted 
from the Action table: equals 3 for our grammar) 

Make initial Parse; // This is element 0 in an Array_of_Input_Parses 

Allocate Stack space 

Let N = 1; 

Let #Successful_Blocks = 1; 

while ( #Successful_Blocks > 0 ) 

    N = #Successful_Blocks * #Actions; 

    Allocate space on the device for N Parses; 

    call N instances of Device_Kernel(); 

    Get #Successful_Blocks from the last device call; 

end while 

end main() 

Function: Device_Kernel() // Called with multiple instances running in parallel 

Let x be a unique number referring to this instance; 

Let Input_Parse = Array_of_Input_Parses [ x/#Actions ]; 

Given the state of Input_Parse, Get all possible actions from the Action table. 

Do Action #(x MOD #Actions ) 

If the action is Shift or Reduce, copy the stack of Input_Parse into 
Output_Parse and update it accordingly, then set the status flag of 
Output_Parse to “successful”. 

Else, if the action is Error or Accept, set the flag of Output_Parse to “failed” 
or “accepted” respectively. 

end Device_Kernel() 



Code 1: Pseudo-code of implementation 
 
Since the Device_Kernel() function cannot split itself further, an alternative 
approach was taken: The host function allocates enough memory and calls the 
Device_Kernel() with multiple instances. Every three instances---“three” being the 
#Actions, which is also the branching factor m mentioned in Section 2.5 and 
calculated in appendix B---are given a parse as input and an empty space for the 
output parse. This is effectively splitting each parse into three.  

Every output parse takes an action: either Shift, Reduce, Error, or Accept, and updates 
its status flag to either successful, failed, or accepted. Every successful parse needs a 
copy of its parent's stack to make its own changes on it according to the action; and 
this stack operation is what causes 90% of the overhead. 

 

 



3.4 Memory Management Overhead 
Naturally, before copying a parse's stack, a segment of the global stack space needs to 
be allocated for the output parse's stack. Keep in mind that multiple processes would 
want to allocate stack segments for themselves simultaneously. So, if this operation 
was not controlled by atomic locks, perhaps one segment might be allocated to two or 
more processes. This means that all parses that are successful, which basically are the 
ones that matter, need to go through the process of stack allocation in a sequential 
manner. 

This sequential allocation procedure consumes more than 90% of the execution time of 
the Device_Kernel() function. The only alternative is to throw away the idea of 
dynamic memory allocation altogether, which leaves us with two options:  

1.​ We pre-allocate all the memory that is going to be needed in the worst case; that 
amount of memory is close to O(2.3n) bytes as shown in 2.5. Such approach is not at 
all feasible, as it would need 8 Gigabytes of memory for an input size of 20 tokens. 

2.​ Instead of providing every parse with its own stack space, We treat all parses 
working in parallel, at a single Device_Kernel() call, as a whole, i.e., for every 
iteration in main(), we do the following: 
●​ Before calling Device_Kernel(), We allocate enough space on the device for all 

parses' stacks, regardless of whether they will succeed or fail. 
●​ After the call, we deallocate the chunk of memory that was, in the previous 

iteration, allocated to what are now the stacks of Input_Parses. 
●​ Then we assign the next iteration's Input_Parses' stack chunk to what are now 

the Output_Parses' stacks 

The second option would've been the best except that CUDA has been showing 
unexpected behavior whenever multiple Cuda Blocks try to write in different places of 
a space allocated by one CudaMalloc(). Therefore, if implemented, it had to be 
controlled by atomic locks, which means it had to be sequential. 

Throughout the project, in order to make up for this low-performing sequential part of 
the code, I had been optimizing memory management operations through the 
following guidelines: 

●​ using C structs instead of objects, 
●​ performing low-level byte-by-byte copying, 
●​ limiting the data types used to consume minimal size of memory, 
●​ and most importantly, doing all data manipulation from the device on device 

memory, thus by, totally avoiding passing data between host and device except 
for a limited number of device pointers and primitive-type variables. 

  ​
Note that the main() function which resides in the host and runs on the CPU, does the 



device memory allocation; and it does it every iteration. This resembles the necessity 
imposed by the CUDA Architecture for the host (CPU) to interfere for managing 
memory. The Cuda Architecture imposes a segregation between device and host in that 
sense. That is why it was important, in order to gain better performance, to resist the 
suggested paradigm, i.e., perform all memory management on the host, and instead, do 
it all on the device. 

 

 



3.5 Issues and Difficulties with CUDA 
As 3.4 concluded, the CUDA Architecture imposes a segregation between device and 
host. This architecture represents a side of CUDA's poor memory management: the 
library is poor, in that it provides no functions that run from the device; and the 
implementation is poor for the evident and frequent resource hogs and memory leaks 
experienced when running a medium number of instances of the kernel; the numbers 
below illustrate. 

According to [7], even if your hardware has only four cores, for example, you can still 
call the kernel with 10,000 parallel blocks, since the device will do all the management 
for you. However, my experience with CUDA says otherwise: there definitely is a limit 
to how many blocks you can instantiate, after which messy things start to happen; and 
that limit is related to the following factors: 

●​ The number of CUDA cores on the device. For a device with 16 cores, the limit 
was around 1500 blocks; and for 336 cores, the limit was around 6000 blocks. 

●​ The size of memory on the device, given that the memory allocated by the host 
and by the variables initialized in the kernel function never exceeded the size of 
global memory. 

●​ Whether the kernel is called with a 1D, or a 2D grid of blocks; the limit increases 
respectively. In other words, the limit seems to depend on maximum number of 
blocks in any one dimension. 

The reason is that CUDA's auto-management of blocks and threads is done using a 
local stack. And when too many blocks, with respect to available cores, are initiated, 
too many local stacks are activated. This might lead to corruption of the local stacks 
which might be the reason for the unexpected results described above.  

So, there is a limit to the number of blocks that can be seamlessly managed. What 
makes it worse is that no option for micro-managing parallel blocks and threads is 
provided. This is specially bad because it shows ambiguity in NVIDIA's approach. Is 
CUDA a high-level or low-level programming environment?! 

The boast that CUDA automatically manages the distribution of virtual blocks and 
threads to physical CUDA cores gives the impression that CUDA is for high-level 
programming while it lacks the most important high-level features. This will drive a 
programmer to low-level programming to recreate these important high-level features. 
For example, CUDA lacks one of the most important data structures in both basic and 
featured libraries: The Stack. The easiest way to create the stack structure in CUDA is 
to use a library that implements a dynamic array or Vector for CUDA, and then create 
your own push and pop functions. The low-level way is to use C-native arrays and 
pointers to implement the stack functions.  

Therefore, CUDA does not provide full functionality neither for high-level 



programmers nor for low-level programmers. 

Another issue is debugging. Debugging is hard with CUDA because you simply cannot 
print messages from the device. You can only examine the output after all instances of 
the Device_Kernel() have finished execution. So, it is like a black box. To solve this 
issue, the programmer has to account for every single run-time error or logical error 
that could occur and check that every value used is in the expected range; if an error is 
detected, the kernel exits with a specific code for each case. 

3.6 Source Code Features 
For the reasons explained in 3.4 and 3.5, I decided to take matters by my own hand and 
create my own device-functions to over-bare the deficiency in CUDA's library: 

●​ A Stack structure that can be manipulated from the device by the device. 
Naturally it includes device-functions: Push(), Pop(), and Peek() 

●​ A Dynamic Array used for storing parse trees as they grow. 
●​ A Buffer used for printing debugging messages. 

 

All of these run from the device on data residing in device memory. Also, they are 
totally independent, i.e., they can be used for any other project simply by using 
#include. This means they represent a framework for future CUDA development. 

​

​
​
 
 



4. Results 

4.1 Raw Data 
All CUDA experiments were conducted on a PC with 8 GB RAM, Intel Xeon X5680 
3.33GHz processor running Ubuntu 11.04 with one Nvidia GeForce 460GTX with the 
following specs: 

●​ 336 CUDA cores. 
●​ 1GB RAM on board. 
●​ Memory Interface: 256 bit 
●​ Bus: PCI Express x16 Gen1 
●​ Software: Nvidia developer driver version 280.13, CUDA Toolkit 3.2 

 

Input String Input 
Size 

CPU 
Running 
Time (ms) 

GPU 
Running 
Time (ms) 

# Parse 
Trees 

Max # 
Stacks 
Needed 

au 2 235.35 0.46 2 4 
acu 3 236.71 0.73 3 8 
acug 4 238.77 1.15 9 22 
acugg 5 241.70 2.95 27 71 
acugga 6 251.41  17.29  77 233 
acuggau 7 281.98 188.10 361 817 
acuggacu 8 372.20 1788.6 1009 2530 
acuggaug 8 409.80 3102.8 1346 3374 
acuggacuu 9 706.28 23,444 3526 9052 
acuggacua 9 781.87 28,029 3909 9949 
acuggauga 9 777.66 42,634 4524 12,318 
acuggacuaa 10 1211.3 402,581 13696 36,220 
Table 1: Results of running the code on Nvidia GTX 460 

 

 

 

 



4.2 Data Analysis 
Using Wolfram Alpha to fit the data of GPU time vs. Input Size to functions yielded the 
following: 

Input to Wolfram Alpha: typeOfFitting fit {2, 0.46}, {3, 0.73}, {4, 1.15}, {5, 2.95}, {6, 17.29}, {7, 
188.1}, {8, 1788.6}, {8, 3102.8}, {9, 23444}, {9, 28029}, {9, 42634}, {10, 402581} 

typeOfFitting can be any of : quadratic, cubic, exponential. 

Type of 
Fitting 

Least-squares Fit Plot 

qudratic 11475.5 n^2-118351. n+247481. 

cubic 4967.66 n^3-78149.4 n^2+365930. 
n-492497. 
 



Polynomial 
of degree 4 

1655.51 x^4-35264.6 x^3+261693. 
x^2-787820. x+797002. 
 

exponential 3.32159*10^-6 e^(2.55207 n) 
 

 

As the derivation in 2.5 predicts, there is a sharp performance drop after the input 
exceeds a capacity c which, by equation 3, in this case equals 4. Therefore an input of 
size n= 6, for example, would take as much time as an input of size (2n – 2c) = 4 running 
completely sequentially; similarly, an input of size 100 would take as much time running 
in parallel as would an input of size 192 running sequentially. Ultimately, the parallel 
programming aspect is  not utilized at all since it does not perform much better than 
the sequential program. On top of that, there is the overhead of managing parse stacks 
and the overhead that comes from the CUDA device itself managing blocks and their 
local stacks. This multiprocessing overhead coming from CUDA cannot be determined 
because of the ambiguity of how CUDA manages cores. 



5. Conclusion 

5.1 Cuda is not the best choice 
The difficulties posed by CUDA's architecture, described in 3.4-3.5, and CUDA's 
ambiguity about the management of cores has been constantly slowing development of 
this project and driving attention towards low-level problems. CUDA needs a fully 
featured more stable library that would keep the programmer focused on the main 
problem. Perhaps with future CUDA toolkit versions, and with libraries such as, Thrust, 
CaCuda, and Hydrazine, developing with CUDA would be more efficient rather than 
time consuming.  

Moreover, the type of problems CUDA was built for and can very efficiently handle 
consists of massive computations, minimal data manipulation and memory operations, 
and zero inter-process communication. And given these factors, parsing is the total 
opposite of where CUDA shines. 

In fact, any LR-based parser is not suitable for CUDA because it needs a stack. Here, it 
is even worse because the stack has to be dynamic. 

5.2 GLR approach is not suitable 
As explained in 2.2, the algorithm is based on GLR parsing. But GLR is usually used with 
techniques that reduce its time complexity from exponential to polynomial. Such 
techniques, splitting and merging, must be discarded to complete the objective of our 
algorithm, i.e., to find all possible parse trees. But if no other techniques, suitable to 
our goal, can replace them, then the implementation will end up running in exponential 
time. 

The algorithm has offered a solution not deep enough as to completely parallelize the 
problem nor traditional enough as to use sequential approximation. 

5.3 Future Work on Algorithm 
The algorithm has to introduce at least one new dimension of parallelization In order 
to completely utilize any parallel programming environment. The most obvious 
sequential procedure in the current algorithm is traversing the algorithm from left to 
right. If this can be done in parallel, then this tedious problem would definitely be 
solved in polynomial time. This is not impossible. Consider the problem of Fibonacci or 
prefix-sum. These have been done in parallel. In fact the latter was brilliantly 
parallelized and implemented in [4]. 

To parallelize our problem, let us forget parsing for a moment and focus on the goal of 
why [2] used parsing in the first place. The goal is predicting RNA secondary structures 
guided by finding the pairs a-u, c-g, and g-u. Suppose we have the following string 



“ACCCUCUC”. As soon as “A” is read from the left, all “U”s should be found in parallel 
that would form an A-U pair; and so the problem would be divided into “A{CCC}U” and 
“A{CCCUC}U” with the substring in braces to be divided next. When no more division is 
possible, because no pairs are found, we can deterministically parse small substrings 
completely in parallel. This divide-and-conquer approach is essential for finding new 
solutions and hidden dimensions of parallelization. This idea can be generalized to 
apply to other similar grammars. 

From where this project stands, it is still premature to try and transform this idea into 
an algorithm. More research should be done on this idea before transforming it into an 
algorithm. 

5.4 Future Work on Implementation 
The source code has been carefully implemented as to be a standalone framework for 
future CUDA development. More details, comments, code clean-up, and 
documentation can be added to make this portion of the code an independent efficient 
library. 



References 

1.​ Aho, Sethi, Ullman, “Compilers: Principles, Techniques, and Tools”, 
Addison-Wesley, 1986. ISBN 0-201-10088-6  

2.​ M.S. Al-Mulhem, “Multithreaded parsing for predicting RNA secondary 
structures”, Int. J. Bioinformatics Research and Applications, Vol. 6, No. 6, 2010 

3.​ Bison Documentation, <http://www.delorie.com/gnu/docs/bison/> 
4.​ Harris M., “Parallel Prefix Sum (Scan) with CUDA”, NVIDIA Corporation 2007 
5.​ Leermakers, R., L. Augusteijn and F.E.J. Kruseman Aretz, “A functional LR parser”, 

Theoretical Computer Science 104 (1992) 313-323.  
6.​ NVIDIA Corporation. “NVIDIA CUDA Programming Guide”. 2007 
7.​ J. Sanders, E. Kandrot, “CUDA by example : an introduction to general-purpose 

GPU programming”, Addison-Wesley, 2011. ISBN 0-13-138768-5​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
 

http://www.delorie.com/gnu/docs/bison/


Appendix A: Transition of Grammar 
 

 

 

The rules or productions on the left-hand side represent the suggested grammar. They 
are expressed in terms of productions from the original grammar in the form of clauses 
related by AND (⋀) and OR (⋁) operators.  

The method used to calculate the probability of left-hand side productions is: 

1- Substitute each clause on the RHS with its probability from the original grammar 

2- Substitute each AND with a multiplication and each OR with an addition. 

3- Evaluate the expression. 

The results are shown in Grammar 2. 



Appendix B: Action Table and the calculation of the 
branching factor m 
Following is  the action table copied verbatim from the source code 
table[NSTATES][NTOKENS][MAX_ACTIONS] =​
{​
//                     eof             a              c              g              u         ​
  /* state 0 */ { { 0 , 0 , 0 }, { 1 , 0 , 0 }, { 2 , 0 , 0 }, { 3 , 0 , 0 }, { 4 , 0 , 0 
} },   ​
  /* state 1 */ { {-3 , 0 , 0 }, { 1 ,-3 , 0 }, { 2 ,-3 , 0 }, { 3 ,-3 , 0 }, { 7 ,-3 , 0 
} },   ​
  /* state 2 */ { {-4 , 0 , 0 }, { 1 ,-4 , 0 }, { 2 ,-4 , 0 }, { 9 ,-4 , 0 }, { 4 ,-4 , 0 
} },   ​
  /* state 3 */ { {-5 , 0 , 0 }, { 1 ,-5 , 0 }, {11 ,-5 , 0 }, { 3 ,-5 , 0 }, {12 ,-5 , 0 
} },   ​
  /* state 4 */ { {-6 , 0 , 0 }, {14 ,-6 , 0 }, { 2 ,-6 , 0 }, {15 ,-6 , 0 }, { 4 ,-6 , 0 
} },   ​
  /* state 5 */ { {127, 0 , 0 }, { 0 , 0 , 0 }, { 0 , 0 , 0 }, { 0 , 0 , 0 }, { 0 , 0 , 0 
} },   ​
  /* state 6 */ { {-1 , 0 , 0 }, { 1 , 0 , 0 }, { 2 , 0 , 0 }, { 3 , 0 , 0 }, { 4 , 0 , 0 
} },   ​
  /* state 7 */ { {-7 , 0 , 0 }, {14 ,-6 ,-7 }, { 2 ,-6 ,-7 }, {15 ,-6 ,-7 }, { 4 ,-6 ,-7 
} },   ​
  /* state 8 */ { { 0 , 0 , 0 }, { 1 , 0 , 0 }, { 2 , 0 , 0 }, { 3 , 0 , 0 }, {18 , 0 , 0 
} },   ​
  /* state 9 */ { {-9 , 0 , 0 }, { 1 ,-5 ,-9 }, {11 ,-5 ,-9 }, { 3 ,-5 ,-9 }, {12 ,-5 ,-9 
} },   ​
  /* state 10*/ { { 0 , 0 , 0 }, { 1 , 0 , 0 }, { 2 , 0 , 0 }, {19 , 0 , 0 }, { 4 , 0 , 0 
} },   ​
  /* state 11*/ { {-10, 0 , 0 }, { 1 ,-4 ,-10}, { 2 ,-4 ,-10}, { 9 ,-4 ,-10}, { 4 ,-4 
,-10} },   ​
  /* state 12*/ { {-11, 0 , 0 }, {14 ,-6 ,-11}, { 2 ,-6 ,-11}, {15 ,-6 ,-11}, { 4 ,-6 
,-11} },   ​
  /* state 13*/ { { 0 , 0 , 0 }, { 1 , 0 , 0 }, {20 , 0 , 0 }, { 3 , 0 , 0 }, {21 , 0 , 0 
} },   ​
  /* state 14*/ { {-8 , 0 , 0 }, { 1 ,-3 ,-8 }, { 2 ,-3 ,-8 }, { 3 ,-3 ,-8 }, { 7 ,-3 ,-8 
} },   ​
  /* state 15*/ { {-12, 0 , 0 }, { 1 ,-5 ,-12}, {11 ,-5 ,-12}, { 3 ,-5 ,-12}, {12 ,-5 
,-12} },   ​
  /* state 16*/ { { 0 , 0 , 0 }, {22 , 0 , 0 }, { 2 , 0 , 0 }, {23 , 0 , 0 }, { 4 , 0 , 0 
} },   ​
  /* state 17*/ { {-2 , 0 , 0 }, { 1 ,-2 , 0 }, { 2 ,-2 , 0 }, { 3 ,-2 , 0 }, { 4 ,-2 , 0 
} },   ​
  /* state 18*/ { {-13, 0 , 0 }, {14 ,-6 ,-13}, { 2 ,-6 ,-13}, {15 ,-6 ,-13}, { 4 ,-6 
,-13} },   ​
  /* state 19*/ { {-15, 0 , 0 }, { 1 ,-5 ,-15}, {11 ,-5 ,-15}, { 3 ,-5 ,-15}, {12 ,-5 
,-15} },   ​
  /* state 20*/ { {-16, 0 , 0 }, { 1 ,-4 ,-16}, { 2 ,-4 ,-16}, { 9 ,-4 ,-16}, { 4 ,-4 
,-16} },   ​
  /* state 21*/ { {-17, 0 , 0 }, {14 ,-6 ,-17}, { 2 ,-6 ,-17}, {15 ,-6 ,-17}, { 4 ,-6 
,-17} },   ​
  /* state 22*/ { {-14, 0 , 0 }, { 1 ,-3 ,-14}, { 2 ,-3 ,-14}, { 3 ,-3 ,-14}, { 7 ,-3 
,-14} },   ​
  /* state 23*/ { {-18, 0 , 0 }, { 1 ,-5 ,-18}, {11 ,-5 ,-18}, { 3 ,-5 ,-18}, {12 ,-5 
,-18} },   ​
}; 

A positive number is a shift action; a negative number is a reduce action.The number of 
actions at every cell will be included in calculating the average of m, the branching 



factor explained in 2.5, except for one column and two rows: the column of the token 
<EOF>, end of file, because it's a special token that occurs only once in the input and  is 
obviously negligible; the row of the initial state number 0; and the row of the terminal 
state number 5, because these two states, at least the former, are only visited once 
during the lifetime of a parse. 

The following table has been extracted from the action table. It carries the number of 
possible reductions per state per token. It is also available in the source code: 
{​
//                 eof     a      c      g      u     ​
  /* state 0 */ {   0  ,   0  ,   0  ,   0  ,   0   },​
  /* state 1 */ {   1  ,   1  ,   1  ,   1  ,   1   },​
  /* state 2 */ {   1  ,   1  ,   1  ,   1  ,   1   },​
  /* state 3 */ {   1  ,   1  ,   1  ,   1  ,   1   },​
  /* state 4 */ {   1  ,   1  ,   1  ,   1  ,   1   },​
  /* state 5 */ {   0  ,   0  ,   0  ,   0  ,   0   },​
  /* state 6 */ {   1  ,   0  ,   0  ,   0  ,   0   },​
  /* state 7 */ {   1  ,   2  ,   2  ,   2  ,   2   },​
  /* state 8 */ {   0  ,   0  ,   0  ,   0  ,   0   },​
  /* state 9 */ {   1  ,   2  ,   2  ,   2  ,   2   },​
  /* state 10*/ {   0  ,   0  ,   0  ,   0  ,   0   },​
  /* state 11*/ {   1  ,   2  ,   2  ,   2  ,   2   },​
  /* state 12*/ {   1  ,   2  ,   2  ,   2  ,   2   },​
  /* state 13*/ {   0  ,   0  ,   0  ,   0  ,   0   },​
  /* state 14*/ {   1  ,   2  ,   2  ,   2  ,   2   },​
  /* state 15*/ {   1  ,   2  ,   2  ,   2  ,   2   },​
  /* state 16*/ {   0  ,   0  ,   0  ,   0  ,   0   },​
  /* state 17*/ {   1  ,   1  ,   1  ,   1  ,   1   },​
  /* state 18*/ {   1  ,   2  ,   2  ,   2  ,   2   },​
  /* state 19*/ {   1  ,   2  ,   2  ,   2  ,   2   },​
  /* state 20*/ {   1  ,   2  ,   2  ,   2  ,   2   },​
  /* state 21*/ {   1  ,   2  ,   2  ,   2  ,   2   },​
  /* state 22*/ {   1  ,   2  ,   2  ,   2  ,   2   },​
  /* state 23*/ {   1  ,   2  ,   2  ,   2  ,   2   },​
};​
 

 

Again, state 0 and 5, and token <EOF> must be excluded from the calculation. 
Additionally, since the Shift operation is always valid, then the branching factor = 1+ 
number of possible reductions. 

The calculation of m , the average branching factor, has been done using a spreadsheet 
software. 

m = 1 + Average of possible reductions = 1 + 1.318 = 2.318 


	Pretext 
	1 Introduction 
	1.1 Parsing Problem 

	2 . Algorithm 
	2.1 The Original Algorithm 
	2.2 Relation to the GLR Parser 
	2.3 Parallelization of the Algorithm 
	2.4 Grammar 
	2.5 Time and Space Complexity 

	3. Implementation 
	3.1 Tweaking the Grammar 
	 
	 
	3.2 Relevant information about CUDA 
	3.3 Tweaking the Algorithm for CUDA 
	 
	 
	3.4 Memory Management Overhead 
	 
	 
	3.5 Issues and Difficulties with CUDA 
	3.6 Source Code Features 

	4. Results 
	4.1 Raw Data 
	4.2 Data Analysis 

	5. Conclusion 
	5.1 Cuda is not the best choice 
	5.2 GLR approach is not suitable 
	5.3 Future Work on Algorithm 
	5.4 Future Work on Implementation 

	Appendix A: Transition of Grammar 
	Appendix B: Action Table and the calculation of the branching factor m 

