
Code.org Computer Science Principles

Syllabus and Overview

rev. January 2016

AP Computer Science Principles
Course Snapshot

Curriculum Overview and Goals
Addressing Diversity, Equity, and Broadening Participation in the Curriculum
Who Should Take This Course?

Teaching the course
Who Should Teach This Course?
Unit Structure: Units, Chapters, Lessons
Lesson Structure and Philosophy
Technical Requirements
Computational Tools, Resources and Materials
Suggested Text:
AP® Assessment

Assessments in the Curriculum
Summative Assessments:
Formative Assessments:

Coverage of the AP CS Principles Framework and Computational Thinking Practices
Unit Overviews
Unit 1: The Digital Representation of Information

Unit 1 Lessons
Unit 1: Practice PT Highlight

Unit 2: The Internet
Unit 2 Lessons
Unit 2: Practice PT highlights

Unit 3: Programming
Unit 3 Lessons
Unit 3 Practice PT Highlights

Unit 4: Data
Unit 4 Practice PT Highlights

Unit 5 - Performance Tasks

0



Code.org Computer Science Principles

Syllabus and Overview

rev. January 2016

AP Computer Science Principles

Code.org’s Computer Science Principles (CSP) curriculum is a full-year, rigorous, entry-level
course that introduces high school students to the foundations of modern computing. The
course covers a broad range of topics that make up computing such as programming,
algorithms, the Internet, big data, digital privacy and security, and the societal impacts of
computing.

The course is designed around the AP Computer Science Principles Framework and prepares
students to take the AP exam and to complete the AP Performance Tasks. For context, it is
useful to be familiar with the CSP Framework before reading this document.

Course Snapshot

Below is a snapshot of the course. The course contains four core units of study, with a fifth
unit devoted almost exclusively to students working on their AP Performance Task (PT) projects.
Each gray box in the diagram represents a group of 2-5 lessons which each take from one to
two class periods to complete, assuming 50-minute class periods. A timeline showing a typical
school year is shown to give a rough estimate of pacing. Note: the AP Exam and submission
deadline is typically the first week of May.

AP is a trademark registered and/or owned by the College Board, which was not involved in the production of, and
does not endorse, this document.

1

http://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-principles-curriculum-framework.pdf


Code.org Computer Science Principles

Syllabus and Overview

rev. January 2016

Curriculum Overview and Goals

Computing affects almost all aspects of modern life and all students deserve a computing
education that prepares them to pursue the wide array of intellectual and career opportunities
that computing has made possible.

This course is not a tour of current events and technologies. Rather, this course seeks to
provide students with a “future proof” foundation in computing principles so that they are
adequately prepared with both the knowledge and skills to live and meaningfully participate in
our increasingly digital society, economy, and culture.

The Internet and Innovation provide a narrative arc for the course, a thread connecting all of the
units. The course starts with learning about what is involved in sending a single bit of
information from one place to another and ends with students considering the implications of a
computing innovation of their own design. Along the way students learn:

● How the Internet works and its impacts on society.
● How to program and rapidly prototype small JavaScript applications both to solve

problems and to satisfy personal curiosity.
● How to collect, analyze and visualize data to gain insight and knowledge.
● How to evaluate the beneficial and harmful effects to people and society brought on by

computing innovations.

Addressing Diversity, Equity, and Broadening Participation in the Curriculum

A central goal of Code.org’s CSP curriculum is for it to be accessible to all students, especially
those in groups typically underrepresented in computing. To this end, we have worked to
provide examples and activities that are relevant and topical enough for students to connect
back to their own interests and lives. Wherever possible, but especially in the videos that
accompany the curriculum, we seek to highlight a diverse and impressive array of role
models in terms of gender, race, and profession from which students can draw inspiration and
“see themselves” participating in computing.

The curriculum assumes no prior knowledge of computing and is written to support both
students and teachers who are new to the discipline. Activities are designed and structured
in such a way that students with diverse learning needs have space to find their voice and to
express their thoughts and opinions. The activities, videos, and computing tools in the
curriculum are strive to have a broad appeal and to be accessible to a student body diverse in
background, gender, race, prior knowledge of computing, and personal interests.

Broadening student participation in computer science is a national goal, and effectively an issue
of social justice. Fancy tools and motivational marketing messages only get you so far. We
believe that the real key to attracting students to computer science and then sustaining that
growth has as much to do with the teacher in the classroom as it does with anything else. The
real “access” students need to computing is an opportunity to legitimately and meaningfully
participate in every lesson regardless of the student’s background or prior experience in
computing coming into the course. For example, the course begins with material that is

2



Code.org Computer Science Principles

Syllabus and Overview

rev. January 2016

challenging but typically unfamiliar even to students who have some prior experience or
knowledge of computer science. Students should not feel intimidated that others in the class
are starting with a leg up on the material.

Who Should Take This Course?

There are no formal prerequisites for this course, though the College Board recommends that
students have taken at least Algebra 1. The course requires a significant amount of expository
writing (as well as writing computer code, of course). For students wishing to complete the
requirements of the AP Exam and Performance Tasks, we recommend they be in 10th grade or
above due the expectations of student responsibility and maturity for an AP course.

The curriculum itself does not assume any prior knowledge of computing concepts
before entering the course. It is intended to be suitable as a first course in computing
though students with a variety of backgrounds and prior experiences will also find the course
engaging and with plenty of challenges. While it is increasingly likely that students entering this
AP course in high school will have had some prior experience with programming, that
experience is equally likely to be highly varied both in quantity and quality. It is for this reason
that the course does not start with programming, but instead with material that is much more
likely to put all students on a level playing field for the first few weeks of class. Read more
about this in the description of Unit 1.

3



Code.org Computer Science Principles

Syllabus and Overview

rev. January 2016

Teaching the course

The work of providing an accessible classroom doesn't stop with curriculum-- the classroom
environment and teaching practice must also be structured such that all learners can access
and engage with the material at a level that doesn’t advantage a few at the expense of others.

Equitable teaching practices are inextricably linked and woven into the design and structure
of our lessons, and in some cases the reason for their existence.

The curriculum provides a number of resources for the teacher, such as assessment support,
computing tools that are designed for learning specific concepts, and the programming
environment, App Lab. These resources have been specifically curated for each each step of
each lesson, which allows the teacher to act in the role of facilitator and coach when addressing
unfamiliar material, rather than having to worry about presenting or lecturing.

Who Should Teach This Course?

The curriculum is designed so that a teacher who is new to teaching this material has
adequate support and preparation - especially for those who go through Code.org’s
professional development program. A teacher who is motivated to teach a course like this, but
who has limited technical or formal computer science experience should be able to be
successful. At a minimum, we strongly recommend that the teacher have a reasonable level of
comfort using computers (using the web, email, downloading and saving files, basic
troubleshooting, etc.) and at least some experience with computer programming obtained
through self-instruction, an online course, or other formal computer science training or
coursework.

Unit Structure: Units, Chapters, Lessons

While the layout of units appears to be modular, the units of study are loosely scaffolded, and
sequenced build students’ skills and knowledge toward the Enduring Understandings of
the CSP Course Framework. The lessons for each unit assume that students have the
knowledge and skills obtained in the previous units. There are also many thematic connections
that can be made between and among lessons and units.

Each unit attempts to “tell a story” about a particular topic in computing from a more primitive
beginning to a more complex end. The lessons in each unit are grouped into chapters of a few
lessons each whose content is related or connected in some way. The course snapshot on the
previous page shows the chapters for each unit. Each lesson is intended to be a complete
thought that takes the student from some motivational question or premise to an activity that
builds skills and knowledge toward some learning objective(s).

Each unit contains at least one summative assessment, project, or Practice PT that asks
students to complete tasks similar to the official PTs. Sometimes these come mid-unit, and
sometimes they come closer to the end.

4



Code.org Computer Science Principles

Syllabus and Overview

rev. January 2016

Lesson Structure and Philosophy

Lessons are designed to be student-centered and to engage students with inquiry-based
and concept-discovery activities. The course does not require the new-to-computing teacher
to lecture or present on computer science topics if they do not want to. Direct instruction, where
necessary, is built into our tools and videos.

Another goal of each lesson is to provide more resources, supports, and activities than a
teacher could (or should) use in one lesson. The teacher plays a large role making choices
and ensuring that the activities, inquiry, and reflection are engaging and appropriate for
their students, as well as assessing student learning.

Most lessons have the following structure:
● A warm-up activity to activate prior knowledge and/or present a thought-provoking

problem
● An activity that varies but is typically one of:

○ Unplugged concept invention, and problem solving scenarios
○ Creating computational artifacts (including programming)
○ Research / reflection / presentation

● A wrap-up activity or reflection

Technical Requirements

The course requires and assumes a 1:1 computer lab or setup such that each student in the
class has access to an internet-connected computer every day in class. Each computer must
have a modern web browser installed. All of the course tools and resources (lesson plans,
teacher dashboard, videos, student tools, programming environment, etc.) are online and
accessible through a web browser.

While the course features many “unplugged” activities away from the computer, daily access to
a computer is essential for every student. It is not required that students have access to
computers at home, but because almost all of the materials are online, students with access to
computers outside of class and at home will find it more convenient and easier to keep up with
the pace of the lessons.

Computational Tools, Resources and Materials

The Code.org CSP curriculum includes almost all resources teachers need to teach the course
including:

Lesson Plans
● Instructional guides for every lesson
● Activity Guides and handouts for students
● Formative and summative assessments
● Exemplars, rubrics, and teacher dashboard

Videos
● Student videos - including tutorials, instructional and inspirational videos

5



Code.org Computer Science Principles

Syllabus and Overview

rev. January 2016

● Teacher videos - including lesson supports and pedagogical tips and tricks
Computational Tools

● Widgets and simulators for exploring individual computing concepts
● Internet Simulator - Code.org’s tool for investigating the various “layers” of the internet
● App Lab - Code.org’s JavaScript programming environment for making apps

A few lessons call for typical classroom supplies and manipulatives such as poster paper,
markers, dixie cups, string, playing cards, a handful of Lego blocks, etc. In most cases there are
alternatives to these materials if necessary. Costs should be low.

Suggested Text:

Blown to Bits http://www.bitsbook.com/
This course does not require or follow a textbook. Blown to Bits is a book that can
be accessed online free of cost. Many of its chapters are excellent supplemental
reading for our course, especially for material in Units 1, 2 and 4. We refer to
chapters as supplemental reading in lesson plans as appropriate.

AP
®
Assessment

The AP Assessment consists of a 74-question multiple choice exam and two “through-course”
assessments called the AP Performance Tasks (PTs). For context it would be useful to
familiarize yourself with the College Board documents. There are two:

● Explore Performance Task
● Create Performance Task

Assessments in the Curriculum

The course provides a number of assessment types and opportunities. For students, the goal of
the assessments is to prepare them for the AP exam and performance tasks. For teachers, the
goal is to use assessments to help guide instruction, give feedback to students, and make
choices about what to emphasize in lessons.

Summative Assessments:

The curriculum contains two types of summative assessments that teachers may elect to use.
They are intended to mimic the AP assessments though in more bite-sized chunks.

Fixed Response (multiple choice) Assessments
Each “chapter” of the curriculum - typically a sequence of 2-5 lessons - has an associated short
multiple choice-style assessment that addresses material in those lessons.

Practice Performance Task Assessments
Each unit contains at least one project designed in the spirit of the Advanced Placement
Performance Tasks (PTs). These Practice PTs are smaller in scope, contextualized to the unit
of study and are intended to help prepare students to engage in the official administration of the
AP PTs at the end of the course.

6

http://www.bitsbook.com/
http://apcsprinciples.org/wp-content/uploads/2015/03/explore-pt-march-2015.pdf
http://apcsprinciples.org/wp-content/uploads/2015/03/create-pt-march-2015.pdf


Code.org Computer Science Principles

Syllabus and Overview

rev. January 2016

Rubrics
The curriculum contains rubrics for assessing certain kinds of student work:

● Written and project work
● Practice PTs
● Programming projects
● Student presentations

Formative Assessments:

The curriculum provides teachers many opportunities for formative assessment (such as checks
for understanding). These include, but are not limited to:

Assessments in Code Studio
All lesson materials can be accessed by students on a single platform called Code Studio. In
addition to housing lesson descriptions, instructional materials, and programming exercises in
App Lab, Code Studio includes features that assist the teacher in completing formative
assessment including:

● Multiple choice or matching questions related to questions on the chapter summative
assessment.

● Free-response text fields where students may input their answer.
● Access to student work within the App Lab programming environment and other digital

tools and widgets used in the curriculum.
● The ability for students to submit final versions of App Lab projects

Worksheets and Activity Guides
● Many lessons contain worksheets or activity guides that ask students to write, answer

questions, and respond to prompts (Answer keys provided).
● These can be collected as a form of formative assessment

It is up to the classroom teacher:
● to determine the appropriateness of the assessments for their classrooms
● to decide how to use, or not to use, the assessments for grading purposes. The

curriculum and Code Studio does not provide teachers with a gradebook.

7



Code.org Computer Science Principles

Syllabus and Overview

rev. January 2016

Coverage of the AP CS Principles Framework and Computational

Thinking Practices

The CS Principles Framework outlines seven “Big Ideas” of computing, and six “Computational
Thinking Practices”. Activities in the course should ensure that students are engaging in the
Computational Thinking Practices while investigating the Big Ideas.

Seven Big Ideas

The [course is] organized around seven big
ideas, which encompass ideas foundational to
studying computer science.

Six Computational Thinking Practices

Computational thinking practices capture
important aspects of the work that computer
scientists engage in.

Big Idea 1: Creativity
Big Idea 2: Abstraction
Big Idea 3: Data
Big Idea 4: Algorithms
Big Idea 5: Programming
Big Idea 6: The Internet
Big Idea 7: Global Impacts

P1: Connecting Computing
P2: Creating Computational Artifacts
P3: Abstracting
P4: Analyzing Problems and Artifacts
P5: Communicating
P6: Collaborating

These Big Ideas and Practices are not intended to be taught in any particular order, nor
are they units of study. The Big Ideas all overlap, intersect, and reference each other. The
practices represent higher order thinking skills, behaviors, and habits of mind that need to be
constantly visited, repeatedly honed, and refined over time.

For example, a learning objective listed under the Big Idea Abstraction also references the
Practice of Programming.

LO 2.2.1 Develop an abstraction when writing a program or creating other computational
artifacts. [P2]

Even though this particular learning objective highlights practice P2: Creating Computational
Artifacts, it clearly will also engage the practice of Abstracting. Therefore, this single learning
objective represents an intersection of two Big Ideas: Abstraction and Programming, while also
engaging at least two Computational Thinking Practices.

This curriculum takes the view that the 7 Big Ideas actually represent a body of knowledge in
which topics of study: The Internet, Programming and Data intersect with more general
principles computing: Creativity, Abstraction, Algorithms and Global Impacts. It is much more
usefully viewed in two dimensions.

8

http://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-principles-curriculum-framework.pdf


Code.org Computer Science Principles

Syllabus and Overview

rev. January 2016

Internet Programming Data

Creativity Invent a communication
protocol

Make a digital scene.
Program an app.

Visualizing Data
Create a visualization

Abstraction Internet Protocols Writing procedures and
functions Encoding images in binary

Algorithms Routing, Encryption String manipulation
Array processing Searching and data mining

Global Impact Security, Privacy, Hacking Software can solve some
but not all problems

Implications of collection
and storage of big data

Unit 2 Unit 3 Unit 4

For Units 2, 3 and 4, we treat the Big Ideas Internet, Programming, and Data as major topics of
study. We ensure that we cover all aspects of those topics by looking at their intersections with
the other 4 big ideas: Creativity, Abstraction, Algorithms, Global Impact. The chart below shows
the intersections of the big ideas and examples of topics addressed in the curriculum.

What about Unit 1? Unit 1 actually addresses items from almost all of the big ideas, but
heavily emphasizes items from the big ideas Abstraction and Creativity. Students invent
things, solve problems, and create many artifacts in Unit 1 related to the digital representation of
information and the implications of attempting to encode information in ways that computers can
process (in binary). See the full unit descriptions for more information.

The six computational thinking practices are addressed continuously throughout the
curriculum in a number of ways. They are woven into the curriculum, engineered into activities
and projects, as well as in teaching tips for lessons. The acts of abstracting[P3] and creating
and analyzing computational artifacts [P2 and P4] are part and parcel of many of the lessons,
activities, and projects, themselves. The teacher plays a large role in ensuring that students are
connecting computing [P1], collaborating [P6] effectively, and communicating [P5] both in
writing and speaking. You can find explicit reference to the computational practices used in
lessons in the unit overviews below.

9



Code.org Computer Science Principles

Syllabus and Overview

rev. January 2016

Unit Overviews

What follows are more in-depth descriptions of each unit of study which explain the topics
covered and what students will be doing. Each unit also highlights a particular lesson, project or
assignment of interest, explaining what students do and showing which learning objectives
and computational thinking practices that particular assignment addresses.

Unit 1: The Digital Representation of Information

This unit sets the foundation for thinking about the digital (binary) representation of information
and how that affects the world we live in. This unit explores the technical challenges and
questions that arise from the need to represent digital information in computers and transfer it
between people and computational devices. Topics include: the digital representation of
information - numbers, text, images, and communication protocols.

The unit begins with a consideration of what is involved in sending a single bit of information
from one place to another. In the Sending Binary Messages lesson students work with a partner
to devise and build their own bit-sending “machines.” Complexity increases as students adapt
their machines to handle multi-bit messages and increasingly complex information. For
encoding information that can be sent between devices we use an Internet Simulator that allows
students to develop and test binary encodings and communication protocols of their own
invention.

The first unit of this course purposefully addresses material that is fundamental to computing but
with which many students, even those with computers at home or who have some prior
experience with programming, are unfamiliar. This levels the playing field for participation and
engagement right from the beginning of the course.

10



Code.org Computer Science Principles

Syllabus and Overview

rev. January 2016

Unit 1 Lessons

Chapters LO [P] (Ek) Lessons / Topics

Getting Started
7.1.1 [P4] (A-O)
7.2.1 [P1] (A-C,G)
7.3.1 [P4] (A-O)
7.4.1 [P1] (A-D)

Personal Innovations

Sending Binary
Messages

2.1.1 [P3] (A-C,E)
2.1.2 [P5] (D-F)
2.3.1 [P3] (A-D)
2.3.2 [P3] (A)
3.3.1 [P4] (A-B)
6.1.1 [P3] (A-D)
6.2.1 [P5] (A,D)
6.2.2 [P4] (A-K)

Sending Binary Messages
Sending Complex Messages
Sending Binary Messages with the Internet
Simulator
Sending Bits in the Real World

Encoding and
Sending Numbers

2.1.1 [P3] (A-G)
2.1.2 [P5] (A-F)
2.3.1 [P3] (A-D)
2.3.2 [P3] (A-E)
3.1.1 [P4] (A,B,D,E)
3.3.1 [P4] (A,B)
6.2.2 [P4] (D,G,H)

Number Systems - Circles, Triangles, Squares
Binary Numbers
Sending Numbers
Encoding Numbers in the Real World

Encoding and
Sending Text

2.1.1 [P3] (A-E)
2.1.2 [P5] (B-F)
2.2.1 [P2] (A,B)
2.3.1 [P3] (A-D)
2.3.2 [P3] (A-E)
3.1.1 [P4] (A,D,E)
3.1.2 [P6] (A-D)
3.1.3 [P5] (A,E)
3.3.1 [P4] (A,B,G)
4.2.1 [P1] (A-D)
4.2.3 [P1] (A-C)
4.2.4 [P4] (A,C,D)
6.1.1 [P3] (A-D)
6.2.2 [P4] (D,F-H)

Encoding and Sending Text
Sending Formatted Text
Bytes and File Sizes

Compression and
Encoding Images

1.1.1 [P2] (A,B)
1.2.1 [P2] (A)
1.3.1 [P2] (C)
2.1.1 [P3] (A-C)
2.1.2 [P5] (D-F)
2.2.1 [P2] (A,B)
2.3.1 [P3] (A-D)
3.1.1 [P4] (A,D,E)
3.1.2 [P6] (A-D)
3.1.3 [P5] (A,E)
3.2.1 [P1] (G-I)
3.3.1 [P4] (A-E,G)

Text Compression
Encoding B&W Images
Encoding Color Images
Lossy Compression and File Formats

Practice PT
2.1.1 [P3] (A-E)
2.1.2 [P5] (A,B,D,F)
2.2.1 [P2] (A,B)

Practice PT - Encode an Experience

11



Code.org Computer Science Principles

Syllabus and Overview

rev. January 2016

Unit 1: Practice PT Highlight

Practice PT: Encode an Experience
Students invent a binary encoding (file format) for a real life
experience. Students must figure out a way to encode or
represent with data, the elements of some kind of human
experience. How might you encode a birthday party? or a
soccer game? or the brush strokes of a real painting?
Students come up with their own creation and present their
work in a format similar to that of a Performance Task.
While the project is done individually the lesson helps
students through an iterative feedback process with a
partner. This assignment emphasizes the writing process,
and giving and incorporating feedback from peers.

Learning Objectives Addressed:
Creativity: 1.1.1 [P2], 1.2.4 [P6]
Abstraction: 2.1.1 [P3], 2.1.2 [P5],
2.2.1 [P2]
Data: 3.2.1 [P1], 3.3.1 [P4]

Computational Thinking Practices
Emphasized:
P1: Connecting Computing
P3: Abstracting
P5: Communicating
P6: Collaborating

12



Code.org Computer Science Principles

Syllabus and Overview

rev. January 2016

Unit 2: The Internet

This unit explores the structure and design of the Internet and the implications of those design
decisions including the reliability of network communication, the security of data, and personal
privacy.

The unit has two logical parts Topics include the Internet Protocol (IP), DNS, TCP/IP,
cryptography and other security and hacking concerns. Students are introduced to algorithms
formally in this unit by considering shortest path problems for routing. The unit also makes the
link between the existence of computationally hard problems and encryption schemes that are
“hard” for computers to crack.

The unit starts with students being presented with a more robust Internet Simulator that
students will use to solve some of the classic problems of network communication such as
addressing devices, routing traffic, and developing packet switching. Students work together to
invent solutions and protocols to many of the problems that arise. The second half of the unit
asks students to consider how information might be encrypted to ensure privacy and some of
the tradeoffs involved.

13



Code.org Computer Science Principles

Syllabus and Overview

rev. January 2016

Unit 2 Lessons

Chapters LO [P] (Ek) Lessons

Getting Started
6.1.1 [P3] (B,C,E)
6.2.2 [P4] (B)
7.3.1 [P4] (A,D,E,G,L)
7.4.1 [P1] (C-E)

The Internet is for Everyone

Internet Addresses,
Packets, and
Redundancy

2.1.1 [P3] (A-C,E)
2.1.2 [P5] (D-F)
3.3.1 [P4] (A-F)
6.1.1 [P3] (B-E)
6.2.1 [P5] (D)
6.2.2 [P4] (B,D,G)
6.3.1 [P1] (A)

The Need for Addressing
Invent an Addressing Protocol
Routers and Redundancy
Packets and Making a Reliable Internet

Algorithms of the
Internet: Routing

4.1.1 [P2] (B,H,I)
4.1.2 [P5] (A-C,F,I)
4.2.1 [P1] (A,B)
4.2.4 [P4] (A-D,G)

Minimum Spanning Tree
Shortest Path Problem
How Routers Learn

Protocols and
Abstraction

6.1.1 [P3] (A-I)
6.2.1 [P5] (B,C)
6.2.2 [P4] (C-E,H)
6.3.1 [P1] (B)

The Need for DNS
DNS in the Real World
HTTP and Abstraction

Practice PT

6.3.1 [P1] (A,B)
7.1.1 [P4] (A-D,H-K,M,0)
7.3.1 [P4] (A-Q)
7.4.1 [P1] (A,B,D,E)
7.5.1 [P1] (A,B)
7.5.2 [P5] (A,B)

Practice PT: The Internet and Society

Security and
Symmetric
Encryption

2.3.2 [P3] (A)
3.1.1 [P4] (A)
3.1.2 [P6] (A,C)
3.3.1 [P4] (B,E,F)
4.2.1 [P1] (A,C,D)
6.3.1 [P1] (C, H-K)
7.3.1 [P4] (G)

Tell Me a Secret - Encrypting Text
Cracking the Code
Keys and Passwords

Hard problems and
Asymmetric
Encryption

2.3.1 [P3] (A,B)
4.2.1 [P1] (A-D)
4.2.2 [P1] (A-D)
4.2.3 [P1] (A,D)
4.2.4 [P4] (A-C)
6.3.1 [P1] (H-L)

Hard Problems - The Traveling Salesperson
Problem
One Way Functions - The WiFi Hotspot Problem
Asymmetric Keys - Cups and Beans
Public Key Crypto

Practice PT

1.1.1 [P2] (A,B)
1.2.1 [P2] (A-C,E)
1.2.2 [P2] (A)
1.2.5 [P4] (B)
6.3.1 [P1] (A-M)
7.3.1 [P4] (A,D,G,H,L)
7.4.1 [P1] (A,B,E)
7.5.1 [P1] (A,B)
7.5.2 [P5] (A,B)

Practice PT- Cybersecurity Innovations

14



Code.org Computer Science Principles

Syllabus and Overview

rev. January 2016

Unit 2: Practice PT highlights

Practice PT: The Internet and Society
Students will research and prepare a flash talk about a social issue
related to the Internet. Students pick one of: Net Neutrality, Internet
Censorship, or Computer/Network Surveillance. This lesson is good
practice for certain elements of the Explore Performance Task, which
students will complete later in the school year. Students will do a bit
of research about impacts of the Internet, explain some technical
details related to ideas in computer science, and connecting these
ideas to global and social impacts. Students will practice
synthesizing information, and presenting their learning in a flash talk.

Learning Objectives
Addressed:
Internet: 6.3.1 [P1]
Global Impacts: 7.1.1 [P4],
7.3.1 [P4], 7.4.1 [P1], 7.5.2
[P5]

Computational Thinking
Practices Emphasized:
P1: Connecting Computing
P5: Communicating

Practice PT: Cybersecurity Innovations
Students will complete a research project on an innovation of their
choosing. Students will need to identify appropriate online resources
to learn about the functionality, context, and impact of their
cybersecurity innovation. After completing their research, students will
present their findings both in a written summary and with an audio /
visual artifact they found online. The written components and audio /
visual artifact students will identify are similar to those students will
see in the AP Performance Tasks.

Learning Objectives
Addressed:
Data: 3.3.1 [P4]
Internet: 6.1.1 [P3], 6.2.1
[P5], 6.2.2 [P4], 6.3.1 [P1]

Computational Thinking
Practices Emphasized:
P1: Connecting Computing
P5: Communicating

15



Code.org Computer Science Principles

Syllabus and Overview

rev. January 2016

Unit 3: Programming

This unit introduces students to programming in the JavaScript language and creating small
applications (apps) that live on the web. This introduction places a heavy emphasis on
understanding general principles of computer programming and revealing those things that are
universally applicable to any programming language.

Students will program in an online programming environment created by Code.org called App
Lab that has many features, chief among them the ability to write JavaScript programs with
click-and-drag blocks as well as typing text - allowing the user to switch back and forth at will.
This should greatly ease the transition to typing text-based programming languages.

The unit begins with students solving problems with classic turtle-style programming, focusing
on the power of procedural abstraction and personal expression with code. After learning some
basics of programming with the turtle, students transition to more event-driven apps, gradually
blending in common user interface objects like buttons and text inputs, images and so on.

Students create a number of small exemplar apps during the unit each emphasizing a different
aspect of programming:

● a digital scene created with turtle graphics
● a simple clicker game
● an “intelligent” digital assistant
● a coin-flipping simulation
● a drawing effects app

The unit also features two practice performance tasks. The first: Design a Digital Scene asks
students to collaborate and share code with their team to create a small scene. The second:
Improve Your App asks students to look back at the exemplar apps they’ve created during the
unit and use one as a point of inspiration for creating their own app.

16



Code.org Computer Science Principles

Syllabus and Overview

rev. January 2016

Unit 3 Lessons

Chapters LO [P] (Ek) Lessons

Getting Started 4.1.2 [P5] (A-C, F, I)
5.2.1 [P3] (E) The Need For Programming Languages

Procedural
Abstraction and
Top-Down Design

2.2.1 [P2] (A, B)
2.2.2 [P3] (A, B)
2.2.3 [P3] (A)
5.1.2 [P2] (A-C, I)
5.1.3 [P6] (A-F)
5.2.1 [P3] (A, B)
5.3.1 [P3] (A-D, L)
5.4.1 [P4] (A-E, I)

Using Simple Commands
Creating Functions
Functions and Top-Down Design

Documentation and
Simple Loops

2.2.1 [P2] (C)
2.2.2 [P3] (A, B)
2.2.3 [P3] (A, B)
4.1.1 [P2] (D)
5.1.2 [P2] (B-F)
5.3.1 [P3] (A, C-G, L-O)
5.4.1 [P4] (C-K)

APIs and Function Parameters
Creating functions with Parameters
Looping and Random Numbers

Practice PT

2.2.1 [P2] (C)
2.2.2 [P3] (A, B)
2.2.3 [P3] (A, B)
4.1.1 [P2] (D)
5.1.2 [P2] (B, C)
5.1.3 [P6] (A-F)
5.3.1 [P3] (A, C, D, F, G, L)
5.4.1 [P4] (C-K)

Design a Digital Scene

Event Driven
Programming and

Apps

1.1.1 [P2] (A, B)
1.2.1 [P2] (A-E)
2.2.1 [P2] (B, C)
5.1.1 [P2] (A-C)
5.1.2 [P2] (J)
5.2.1 [P3] (D, G, H)
5.4.1 [P4] (C, E, F, M)

Events Unplugged
Event-Driven Programming and Debugging
Beyond Buttons Toward Apps
Introducing Design Mode
Multi-screen Apps

Variables and Strings
4.1.1 [P2] (A, C)
5.1.1 [P2] (B)
5.2.1 [P3] (C, F)
5.3.1 [P3] (I)

Controlling Memory with Variables
Using Variables in Apps
User Input and Strings

Conditionals and
Boolean Logic

1.2.3 [P2] (A-C)
1.2.4 [P6] (A-D)
1.3.1 [P2] (E)
2.2.3 [P3] (F)
4.1.1 [P2] (A-C, I)
5.1.2 [P2] (A-C)
5.1.3 [P6] (A-F)
5.3.1 [P3] (I)
5.5.1 [P1] (E-G)
7.1.1 [P4] (L-N)

Introduction to Digital Assistants
Understanding Program Flow and Logic
Introduction to Conditional Logic
Compound Conditional Logic
Digital Assistant Project

Loops and Arrays

2.3.1 [P3] (A, C, D)
2.3.2 [P3] (A-F)
3.1.1 [P4] (A)
4.1.1 [P2] (A-D, H)
4.1.2 [P5] (A-G)
5.1.1 [P2] (A, B)

While Loops
Loops and Simulations
Introduction to Arrays

17



Code.org Computer Science Principles

Syllabus and Overview

rev. January 2016

5.1.3 [P6] (A-F)
5.2.1 [P3] (A-F, I-K)
5.3.1 [P3] (A-D, G, K, L)
5.4.1 [P4] (B, C, E-H, K-M)
5.5.1 [P1] (D-J)

Image Scroller with Key Events

Processing Arrays of
Data

1.1.1 [P2] (B)
1.2.1 [P2] (A-D)
1.2.3 [P2] (A-C)
1.3.1 [P2] (C-E)
2.2.1 [P2] (A-C)
2.2.2 [P3] (A, B)
4.1.1 [P2] (A-I)
4.1.2 [P5] (A-C, G, I)
4.2.4 [P4] (D-F, H)
5.1.1 [P2] (A-E)
5.1.2 [P2] (A-C, J)
5.2.1 [P3] (A-F, I, J)
5.3.1 [P3] (A-G, J-L)
5.4.1 [P4] (A-H, L-N)
5.5.1 [P1] (D-J)

Processing Arrays
Functions with Return Values
Canvas and Arrays in Apps

Practice PT

1.1.1 [P2] (A, B)
1.2.1 [P2] (A-E)
1.2.2 [P2] (A, B)
1.2.3 [P2] (A-C)
1.2.4 [P6] (A-F)
1.2.5 [P4] (A-D)
2.2.1 [P2] (A-C)
2.2.2 [P3] (A, B)
4.1.1 [P2] (A-I)
4.1.2 [P5] (A-I)
5.1.1 [P2] (A-E)
5.1.2 [P2] (A-J)
5.1.3 [P6] (A-F)
5.2.1 [P3] (A-F, I-K)
5.3.1 [P3] (A-O)
5.4.1 [P4] (C, E-H, J, L-N)
5.5.1 [P1] (A-J)

Improve Your App

Unit 3 Practice PT Highlights

Practice PT: Digital Scene Design
In this project students work with a small team to create a
digital scene with turtle graphics. They plan the scene
together, code the parts separately and bring them together to
make a whole. An important focus of this project is on how
teams of programmers work together, and some insight is
given into how real engineering teams do this. Students are
asked to reflect on their experience in a way that is similar to
the Create performance task. In terms of programming, a
heavy emphasis is on writing functions (procedures) that can
be easily incorporated into others’ code.

Learning Objectives Addressed:
Creativity: 1.1.1 [P2], 1.2.1 [P2],
1.2.4 [P6], 1.3.1 [P2]
Abstraction: 2.2.1 [P2], 2.2.2 [P3]
Algorithms: 4.1.1 [P2]
Programming: 5.1.1 [P2], 5.1.3
[P6], 5.3.1 [P3]

Computational Practices
Emphasized:
P2: Creating Computational
Artifacts
P3: Abstracting
P6: Collaborating

18



Code.org Computer Science Principles

Syllabus and Overview

rev. January 2016

Practice PT: Improve Your App
To conclude their introduction to programming, students will
design an app based off of one they have previously worked on
in the programming unit. Students will choose the kinds of
improvements they wish to make to a past project in order to
show their ability to add new abstractions (procedures and
functions) and algorithms to an existing program. The project
concludes with reflection questions similar to those students
will see on the AP Create Performance Task. Students can
either complete the project individually or with a partner. Every
student will need a collaborative partner with whom they will
give and receive feedback.

Learning Objectives Addressed:
Creativity: 1.1.1 [P2], 1.2.1 [P2],
1.2.2 [P2], 1.2.3 [P2], 1.2.4 [P6],
1.3.1 [P2]
Abstraction: 2.2.1 [P2], 2.2.2 [P3]
Algorithms: 4.1.1 [P2], 4.1.2 [P5]
Programming: 5.1.1 [P2], 5.1.2
[P2], 5.1.3 [P6], 5.2.1 [P3], 5.3.1
[P3], 5.4.1 [P4], 5.5.1 [P1]

Computational Practices
Emphasized:
P2: Creating Computational Artifacts
P3: Abstracting
P5: Communicating
P6: Collaborating

19



Code.org Computer Science Principles

Syllabus and Overview

rev. January 2016

Unit 4: Data

Being able to digitally manipulate data, visualize it, identify patterns, trends and possible
meanings are important practical skills that computer scientists do every day. The data rich
world we live in also introduces many complex questions related to public policy, law, ethics and
societal impact. Understanding where data comes from, having intuitions about what could be
learned or extracted from it, and being able to use computational tools to manipulate data and
communicate about it are the primary skills addressed in the unit.

Chapters LO [P] (Ek) Lessons / Topics

Getting Started
3.2.1 [P1] (A,B,C)
5.1.1 [P2] (F)
7.1.1 [P4] (C)
7.2.1 [P1] (A,B,G)

Introduction to Data - The Tracker Project

Interpreting Visual
Data

1.1.1 [P2] (A,B)
1.2.1 [P2] (A,B,E)
1.2.5 [P4] (A-D)
3.1.1 [P4] (A,B,D,E)
3.1.2 [P6] (A-F)
3.1.3 [P5] (A-E)
3.2.1 [P1] (A-E)
7.1.1 [P4] (E-G)
7.4.1 [P1] (A,C,D)

Telling Stories with Visualizations - Google Trends
Good v. Bad Visualization
Digital Divides

Communicating with
Visualization

1.1.1 [P2] (A,B)
1.2.1 [P2] (A-C)
1.2.4 [P6] (A,B,F)
3.1.1 [P4] (A-E)
3.1.2 [P6] (A-F)
3.1.3 [P5] (A-C)
3.2.1 [P1] (A-G,I)
3.2.2 [P3] (C,G)
3.3.1 [P4] (F)
7.3.1 [P4] (G)

What’s the story?
Chart it - using Visualization for Discovery
Cleaning and Manipulating your data
Summarizing Data in Tables

Practice PT

1.2.1 [P2] (A-C,E)
1.2.2 [P2] (A,B)
1.2.5 [P4] (A-D)
3.1.3 [P5] (A-D)
7.3.1 [P4] (J)
7.5.2 [P5] (A,B)

Tell a Data Story

Data in the Real
World

1.2.5 [P4] (A-D)
3.1.1 [P4] (C-E)
3.1.2 [P6] (F)
3.2.1 [P1] (A-D,G)
3.2.2 [P3] (A-D,G,H)
3.3.1 [P4] (A,B,F)
7.1.1 [P4] (F)
7.2.1 [P1] (A)
7.3.1 [P4] (A,D-M)
7.5.2 [P5] (A,B)

Big data - Where does it come from?
Big Public Data - datasets and APIs
Security and Privacy in the world of data
Public policy and privacy policies

Practice PT
1.2.5 [P4] (A-D)
3.1.3 [P5] (A-E)
3.3.1 [P4] (A,B,F)
7.1.2 [P4] (D,E,F,G)
7.3.1 [P4] (G,H)

Propose an Innovation

20



Code.org Computer Science Principles

Syllabus and Overview

rev. January 2016

Unit 4 Practice PT Highlights

Tell a Data Story - Communicate Data Visually
This small project culminates a series of lessons in
which students, provided a set of raw data, must use
digital tools to collaboratively investigate the data to
discover possible connections and trends. In the end
students must produce a visual explanation of their
findings in the data and write a small about about what
the data shows. The emphasis is on producing the
visual communication. The reflection questions mimic
those on the Explore PT.

Learning Objectives Addressed:
Creativity: 1.1.1 [P2], 1.2.1 [P2],
1.2.4 [P6], 1.2.5 [P4]
Data: 3.1.1 [P4], 3.1.2 [P6], 3.1.3
[P5], 3.2.1 [P1]
Gbal Impacts: 7.1.1 [P4], 7.4.1
[P1]

Computational Practices
Emphasized:
P1: Connecting Computing
P2: Creating Computational
Artifacts
P5: Communicating
P6: Collaborating

Practice PT - Propose an Innovation
Connecting back to the very beginning of the course,
students here collaboratively propose a computing
innovation of their own imagining that would positively
affect or impact some community, group, or individual.
As part of the proposal students must explain how the
innovation would collect or use data, develop a privacy
policy around its use, anticipate the possible negative
effects the innovation might have and explain tradeoffs
that need to be considered. This project prepares
students for various aspects of the Explore Performance
Task, particularly in considering how a computing
innovation produces and consumes data and the
beneficial and harmful effects that might result.

Learning Objectives Addressed:
Creativity: 1.3.1 [P2]
Data: 3.1.3 [P5], 3.3.1 [P4]
Gbal Impacts: 7.1.1 [P4], 7.3.1
[P4], 7.4.1 [P1]

Computational Practices
Emphasized:
P1: Connecting Computing
P4: Analyzing Problems and
Artifacts
P5: Communicating
P6: Collaborating

21



Code.org Computer Science Principles

Syllabus and Overview

rev. January 2016

Unit 5 - Performance Tasks

In Units 1-4 students engaged in projects to learn and practice the skills and content they
needed to know in order to succeed on the AP CSP Performance Tasks. Still, a certain level of
guidance during the PT development process is not only recommended, but vital. For example,
coaching students early on helps them clarify their ideas and/or approaches to the PTs. This unit
is primarily set aside to ensure that students have enough time in class to work on and complete
their performance tasks for submission to the College Board. There are a few guided activities
for teachers to run that will help students get organized and ensure they have reasonable
project plans that can be achieved in the time allotted. In the official submission to the College
Board, teachers will attest that all student work is original and that the appropriate amount of
class time - 8 hours for Explore, 12 hours for Create - was provided.

Chapters LO [P] (Ek) Lessons / Topics

Explore PT Overview
7.5.1 [P1] (A,B)
7.5.2 [P5] (A,B)

Planning to do the Explore PT
Research Tips and Tricks

Requirements and managing time.

Explore PT

Administration of

Explore Performance Tasks

8 hours

Create PT Overview
5.1.1 [P2] (A, B, C)
5.1.2 [P2](A, B, C)
5.1.3 [P6] (B,C)

Planning to do the Create PT
Requirements and managing time.

Create PT

Administration of

Create Performance Tasks

12 hours

22


