
Are you reading this? Feel free to edit and comment.
Please insert -> comment to add comments rather than adding them to the actual text.

See also discussion: https://plus.google.com/u/0/103112149634414554669/posts/FMDg2Vht8sb

Authors

Sai, Alex Fink

Overview

Currently, canonical Tor .onion URLs consist of a naked 80-bit hash . This is not something that 1

users can even recognize for validity, let alone produce directly. It is vulnerable to partial-match
fuzzing attacks , where a would-be MITM attacker generates a very similar hash and uses 2

various social engineering, wiki poisoning, or other methods to trick the user into visiting the
spoof site.

This proposal gives an alternative method for displaying and entering .onion and other URLs,
such that they will be easily remembered and generated by end users, and easily published by
hidden service websites, without any dependency on a full domain name type system like e.g.
namecoin . This makes it easier to implement (requiring only a change in the proxy). 3

This proposal could equally be used for IPv4, IPv6, etc, if normal DNS is for some reason
untrusted.

This is not a petname system , in that it does not allow service providers or users to associate 4 5

a name of their choosing to an address . Rather, it is a mnemonic system that encodes the 80 6

bit .onion address into a meaningful and memorable sentence. A full petname system (based 7

7 "Meaningful" here inasmuch as e.g. "Barnaby thoughtfully mangles simplistic yellow camels" is an
absurdist but meaningful sentence. Absurdness is a feature, not a bug; it decreases the probability of
mistakes if the scenario described is not one that the user would try to fit into a template of things they
have previously encountered IRL. See research into linguistic schema for further details.

6 However, service operators can generate a large number of hidden service descriptors and check
whether their hashes result in a desirable phrasal encoding (much like certain hidden services currently
use brute force generated hashes to ensure their name is the prefix of their raw hash). This won't get you
whatever phrase you want, but will at least improve the likelihood that it's something amusing and
acceptable.

5 https://addons.mozilla.org/en-US/firefox/addon/petname-tool/

4 https://en.wikipedia.org/wiki/Zooko's_triangle

3 http://dot-bit.org/Namecoin

2 http://www.thc.org/papers/ffp.html

1 https://trac.torproject.org/projects/tor/wiki/doc/HiddenServiceNames
https://gitweb.torproject.org/torspec.git/blob/HEAD:/address-spec.txt

https://gitweb.torproject.org/torspec.git/blob/HEAD:/address-spec.txt

on registration of some kind, and allowing for shorter, service-chosen URLs) can be
implemented in parallel . 8

This system has the three properties of being secure, distributed, and human-meaningful — it
just doesn't also have choice of name (except of course by brute force creation of multiple keys
to see if one has an encoding the operator likes).

This is inspired by Jonathan Ackerman's "Four Little Words" proposal for doing the same thing 9

with IPv4 addresses. We just need to handle 80+ bits, not just 32 bits.

It is similar to Markus Jakobsson & Ruj Akavipat's FastWord system , except that it does not 10

permit user choice of passphrase, does not know what URL a user will enter (vs verifying
against a single stored password), and again has to encode significantly more data.

This is also similar to RFC1751 , RFC2289 , and multiple other fingerprint encoding systems 11 12 13

(e.g. PGPfone using the PGP wordlist , and Arturo Filatsò's OnionURL), but we aim to 14 15 16

make something that's as easy as possible for users to remember — and significantly easier
than just a list of words or pseudowords, which we consider only useful as an active
confirmation tool, not as something that can be fully memorized and recalled, like a normal
domain name.

Requirements

1.​ encodes at least 80 bits of random data (preferably more, eg for a checksum)
2.​ valid, visualizable English sentence — not just a series of words 17

3.​ words are common enough that non-native speakers and bad spellers will have
minimum difficulty remembering and producing (perhaps with some spellcheck help)

4.​ not syntactically confusable (e.g. order should not matter)

17 http://www.reddit.com/r/technology/comments/ecllk

16 https://github.com/hellais/Onion-url
https://github.com/hellais/Onion-url/blob/master/dev/mnemonic.py

15 http://en.wikipedia.org/wiki/PGP_word_list

14 http://www.mathcs.duq.edu/~juola/papers.d/icslp96.pdf

13 https://github.com/singpolyma/mnemonicode
http://mysteryrobot.com
https://github.com/zacharyvoase/humanhash

12 http://tools.ietf.org/html/rfc2289

11 https://tools.ietf.org/html/rfc1751

10 http://fastword.me/

9 http://blog.rabidgremlin.com/2010/11/28/4-little-words/

8 https://gitweb.torproject.org/torspec.git/blob/HEAD:/proposals/ideas/xxx-onion-nyms.txt

5.​ short enough to be easily memorized and fully recalled at will, not just recognized
6.​ no dependency on an external service
7.​ dictionary size small enough to be reasonable for end users to download as part of the

onion package
8.​ consistent across users (so that websites can e.g. reinforce their random hash's phrase

with a clever drawing)
9.​ not create offensive sentences that service providers will reject
10.​resistant against semantic fuzzing (e.g. by having uniqueness against WordNet synsets18

)

Possible implementations

1. Have a fixed number of template sentences, such as:

●​ Adj subj adv vtrans adj obj
●​ Subj and subj vtrans adj obj
●​ … etc

For a 6 word sentence, with 8 (3b) templates, we need ~12b (4k word) dictionaries for each
word category.

If multiple words of the same category are used, they must either play different grammatical
roles (eg subj vs obj, or adj on a different item), be chosen from different dictionaries, or there
needs to be an order-agnostic way to join them at the bit level. Preferably this should be
avoided, just to prevent users forgetting the order.

2. As (1), but treat sentence generation as decoding a prefix code, and have a Huffman code for
each word class. We suppose it’s okay if the generated sentence has a few more words than it
might, as long as they’re common lean words. E.g., for adjectives, “good” might cost only six
bits while “unfortunate” costs twelve.

Choice between different sentence syntaxes could be worked into the prefix code as well, and
potentially done separately for each syntactic constituent.

3. This method is flawed; the template code bits are unrecoverable.
Treat the first n bits as designating a template code.

Each template specifies phrasal constituents, together with the required bitlength and binding
material — e.g. "The adj4 n11 adv10 vtrans12 n8 in loc9 with a(n) adj9 n11" would designate an

18 http://wordnet.princeton.edu/wordnet/man2.1/wnstats.7WN.html

interpretation of the following 4+11+10+12+8+9+9+11 = 74 bits. Each constituent is simply
looked up in the appropriate frequency-sorted word-class dictionary, as (2), so e.g. adj4 is a very
common adjective, whereas vtrans12 is a moderately rare transitive verb.

Bitwidths smaller than the dictionary are 0-padded on the left for lookup (i.e. there are only 2x
more 5-bit words than 4-bit; they are not separate).

There can be a fairly large number of templates if the dictionary sizes across constituent classes
is adequate; for instance, supposing that one uses 6 words of possible bitwidth 4...12, required
to total 60 bits, there are 5853 (~12.5 bits) possible permutations among the bitwidths. This 19

would require a further ~7.5 bits (~181) further information in the header, which could be
achieved using alternative basic templates as in (1).

Alternatively, if we have 7 words, we can use a much smaller 10 bit (~1k word) dictionary and
still take up ~12.8 bits using this method. Etc.

Usage

To form mnemonic .onion URL, just join the words with dashes or underscores, stripping
minimal words like 'a', 'the', 'and' etc., and append '.onion'. This can be readily distinguished
from standard hash-style .onion URLs by form.

Translation should take place at the client — though hidden service servers should also be able
to output the mnemonic form of hashes too, to assist website operators in publishing them (e.g.
by posting an amusing drawing of the described situation on their website to reinforce the
mnemonic).

After the translation stage of name resolution, everything proceeds as normal for an 80-bit hash
onion URL.

The user should be notified of the mnemonic form of hash URL in some way, and have an easy
way in the client UI to translate mnemonics to hashes and vice versa. For the purposes of
browser URLs and the like though, the mnemonic should be treated on par with the hash; if the
user enters a mnemonic URL they should not become redirected to the hash version. (If
anything, the opposite may be true, so that users become used to seeing and verifying the
mnemonic version of hash URLs, and gain the security benefits against partial-match fuzzing.)

Ideally, inputs that don't validly resolve should have a response page served by the proxy that
uses a simple spell-check system to suggest alternate domain names that are valid hash

19 https://plus.google.com/u/0/103112149634414554669/posts/DLfvB76Zhav

encodings. This could hypothetically be done inline in URL input, but would require changes on
the browser (normally domain names aren't subject so spellcheck), and this avoids that
implementation problem.

International support

It is not possible for this scheme to support non-English languages without
a) (usually) Unicode in domains (which is not yet well supported by browsers), and
b) fully customized dictionaries and phrase patterns per language

The scheme must not be used in an attempted 'translation' by simply replacing English words
with glosses in the target language. Several of the necessary features would be completely
mangled by this (e.g. other languages have different synonym, homonym, etc groupings, not to
mention completely different grammar).

It is unlikely a priori that URLs constructed using a non-English dictionary/pattern setup would in
any sense 'translate' semantically to English; more likely is that each language would have
completely unrelated encodings for a given hash.

We intend to only make an English version at first, to avoid these issues during testing.

