/Team:Braunschweig. (2014). E. cowli: Fighting Climate Change at the Source. Retrieved from http://2014.igem.org/Team:Braunschweig

Agrawal, N., Dasaradhi, P. V. N., Mohmmed, A., Malhotra, P., Bhatnagar, R. K., & Mukherjee, S. K. (2003). RNA interference: biology, mechanism, and applications. Microbiology and Molecular Biology Reviews : MMBR, 67(4), 657–85. https://doi.org/10.1128/MMBR.67.4.657

Alit, H., & Murrell, J. C. (2009). Development and validation of promoter-probe vectors for the study of methane monooxygenase gene expression in Methylococcus capsulatus Bath. Microbiology, 155(3), 761–771. https://doi.org/10.1099/mic.0.021816-0

Anthony, C., & Williams, P. (2003). The structure and mechanism of methanol dehydrogenase. In Biochimica et Biophysica Acta - Proteins and Proteomics (Vol. 1647, pp. 18–23). https://doi.org/10.1016/S1570-9639(03)00042-6

ATCC. (n.d.). Methylococcus capsulatus ATCC 33009, 1–2.

ATCC. (1989). Methylococcus capsulatus ATCC 19069, 152, 154–159.

Baani, M., & Liesack, W. (2008). Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SC2. Proceedings of the National Academy of Sciences, 105(29), 10203–10208. https://doi.org/10.1073/pnas.0702643105

Boettcher, M., & McManus, M. T. (2015). Choosing the Right Tool for the Job: RNAi, TALEN, or CRISPR. Molecular Cell. https://doi.org/10.1016/j.molcel.2015.04.028

Bowman, J. P., Sly, L. I., Nichols, P. D., & Hayward, a. C. (1994). Revised Taxonomy of the Methanotrophs: Description of Methylobacter gen. nov., Emendation of Methylococcus, Validation of Methylosinus and Methylocystis Species, and a Proposal that the Family Methylococcaceae Includes Only the Group I Methanotrophs. International Journal of Systematic Bacteriology, 44(2), 375–375. https://doi.org/10.1099/00207713-44-2-375

Brantl, S. (2002). Antisense-RNA regulation and RNA interference. Biochim Biophys Acta, 1575(1– 3), 15–25. https://doi.org/S0167478102002804 [pii]

Brenner, D. J., Krieg, N. R., Staley, J. T., Garrity, G. M., Brenner, D. J., Vos, P. De, ... Noel, R. (n.d.). Systematic.

Cardy, D. L. N., Laidler, V., Salmond, G. P. C., & Murrell, J. C. (1991a). Molecular analysis of the methane monooxygenase (MMO) gene cluster of Methylosinus trichosporium OB3b. Molecular Microbiology, 5(2), 335–342. https://doi.org/10.1111/j.1365-2958.1991.tb02114.x

Cardy, D. L. N., Laidler, V., Salmond, G. P. C., & Murrell, J. C. (1991b). The methane monooxygenase gene cluster of Methylosinus trichosporium: cloning and sequencing of the mmoC gene. Archives of Microbiology, 156(6), 477–483. https://doi.org/10.1007/BF00245395

Carter, P. (1986). Site-directed mutagenesis. Biochemical Journal, 237(1), 1–7. https://doi.org/10.1007/978-1-61737-954-3

Chase, D. H. (1954). Vírusok röpdolgozat 1.

Chauhan, S., Rai, V., & Singh, H. B. (n.d.). Biosensors.

Coufal, D. E., Blazyk, J. L., Whittington, D. A., Wu, W. W., Rosenzweig, A. C., & Lippard, S. J. (2000). Sequencing and analysis of the Methylococcus capsulatus (Bath) soluble methane monooxygenase genes. European Journal of Biochemistry, 267(8), 2174–2185. https://doi.org/10.1046/j.1432-1327.2000.01210.x


Culpepper, M. A., & Rosenzweig, A. C. (2014). Structure and Protein–Protein Interactions of Methanol Dehydrogenase from\n Methylococcus capsulatus\n (Bath). Biochemistry, 53(39), 6211– 6219. https://doi.org/10.1021/bi500850j

Csáki, R., Bodrossy, L., Klem, J., Murrell, J. C., & Kovács, K. L. (2003a). Genes involved in the copper-dependent regulation of soluble methane monooxygenase of Methylococcus capsulatus (Bath): Cloning, sequencing and mutational analysis. Microbiology. https://doi.org/10.1099/mic.0.26061-0

Csáki, R., Bodrossy, L., Klem, J., Murrell, J. C., & Kovács, K. L. (2003b). Genes involved in the copper-dependent regulation of soluble methane monooxygenase of Methylococcus capsulatus (Bath): Cloning, sequencing and mutational analysis. Microbiology, 149(7), 1785–1795. https://doi.org/10.1099/mic.0.26061-0

de Souza, N. (2012). Prokaryotic RNAi. Nature Publishing Group, 9(3), 220–221. https://doi.org/10.1038/nmeth.1916

Dietrich, P., Sanders, D., & Hedrich, R. (2001). The role of ion channels in light-dependent stomatal opening. Journal of Experimental Botany, 52(363), 1959–1967. https://doi.org/10.1093/jexbot/52.363.1959

Farhan Ul Haque, M., Gu, W., DiSpirito, A. A., & Semrau, J. D. (2016). Marker exchange mutagenesis of mxaF, encoding the large subunit of the Mxa methanol dehydrogenase, in Methylosinus trichosporium OB3b. Applied and Environmental Microbiology, 82(5), 1549–1555. https://doi.org/10.1128/AEM.03615-15

Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391(6669), 806–811. https://doi.org/10.1038/35888

Fizet, F., Gergely, P. I., Lajos, S. T., & Moln, S. (2013). Fizetendő összeg : Fizetési határidő : Felhasználó azonosító száma : Felhasználó neve : Felhasználó címe : Felhasználási hely címe : 6725 Szeged A rezsidíj csökkentése nélkül Önt ebben az elszámolt időszakban a következő fizetési kötelezettség terhelte vo, 1–4.

Fizet, F., Zs, D., Tak, S. N., & Tak, S. N. (2013). BÁNNÉ DELY ZSÓFIA Szeged Fizetendő összeg : Fizetési határidő : Felhasználó azonosító száma : Felhasználó neve : Felhasználó címe : Felhasználási hely címe : 6725 Szeged A rezsidíj csökkentése nélkül Önt ebben az elszámolt időszakban a következő fizetési , 10–13.

Foster, J. W., & Davis, R. H. (1966). A methane-dependent coccus, with notes on classification and nomenclature of obligate, methane-utilizing bacteria. Journal of Bacteriology, 91(5), 1924–1931.

Fox, B. G., Borneman, J. G., Wackett, L. P., & Lipscomb, J. D. (1990). Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: mechanistic and environmental implications. Biochemistry, 29(27), 6419–6427. https://doi.org/10.1021/bi00479a013

Giver, L. (2015). Methane and Methanotrophic Bacteria as a Biotechnological Platform Calysta overview.

Good, L., & Stach, J. E. M. (2011). Synthetic RNA silencing in bacteria - antimicrobial discovery and resistance breaking. Frontiers in Microbiology, 2(SEP), 1–11. https://doi.org/10.3389/fmicb.2011.00185

Guyton, A. C., & Hall, J. E. (2011). Textbook of Medical Physiology. 2011 (Vol. XXXIII). https://doi.org/10.1007/s13398-014-0173-7.2


Hammond, S. M. (2005). Dicing and slicing: The core machinery of the RNA interference pathway. FEBS Letters. https://doi.org/10.1016/j.febslet.2005.08.079

Hanson, R. S., & Hanson, T. E. (1996). Methanotrophic bacteria. Microbiological Reviews, 60(2), 439–471. https://doi.org/<p></p>

Harwood, J. H., Williams, E., & Bainbridge, B. W. (1972). Mutation of the Methane Oxidizing Bacterium, Methylococcus capsulatus. Journal of Applied Bacteriology, 35(1), 99–108. https://doi.org/10.1111/j.1365-2672.1972.tb03678.x

Henard, C. A., Smith, H., Dowe, N., Kalyuzhnaya, M. G., Pienkos, P. T., & Guarnieri, M. T. (2016). Bioconversion of methane to lactate by an obligate methanotrophic bacterium. Scientific Reports, 6(1), 21585. https://doi.org/10.1038/srep21585

Henckel, T., Friedrich, M., Conrad, R., Henckel, T., Friedrich, M., & Conrad, R. (1999). Molecular Analyses of the Methane-Oxidizing Microbial Community in Rice Field Soil by Targeting the Genes of the 16S rRNA , Particulate Methane Monooxygenase , and Methanol Dehydrogenase Molecular Analyses of the Methane-Oxidizing Microbial Community in R. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 65(5), 1980–1990.

Herrero, M., De Lorenzo, V., & Timmis, K. N. (1990). Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram- negative bacteria. Journal of Bacteriology. https://doi.org/10.1128/jb.172.11.6557-6567.1990

Így egy enzim (átmeneti) expressziójával potenciálisan több, jól irányított rekombinációs eseményt is tudunk vezérelni. (n.d.).

Iii, R., Interference, R. N. A., & Complex, S. (n.d.). RNA Interference. Cell.

Kalyuzhnaya, M. G., Puri, A. W., & Lidstrom, M. E. (2015). Metabolic engineering in methanotrophic bacteria. Metabolic Engineering, 29, 142–152. https://doi.org/10.1016/j.ymben.2015.03.010

Keates, A. C., Fruehauf, J., Xiang, S., & Li, C. J. (2008). TransKingdom RNA interference: a bacterial approach to challenges in RNAi therapy and delivery. Biotechnology & Genetic Engineering Reviews, 25(May), 113–27. https://doi.org/10.5661/bger-25-113

Kelly, W. J., Li, D., Lambie, S. C., Cox, F., Attwood, G. T., Altermann, E., & Leahy, S. C. (2016). Draft Genome Sequence of the Rumen Methanogen Methanobrevibacter olleyae YLM1. In Genome Announcements (Vol. 4, pp. e00232-16). https://doi.org/10.1128/genomeA.00232-16

Khalifa, A. Y. Z. (2013). Mutagenesis of a Copper P-Type ATPase Encoding Genein Methylococcus capsulatus (Bath) Results inCopper-Resistance. International Journal of Bioscience, Biochemistry and Bioinformatics. https://doi.org/10.7763/IJBBB.2013.V3.159

Kitmitto, A., Myronova, N., Basu, P., & Dalton, H. (2005). Characterization and structural analysis of an active particulate methane monooxygenase trimer from Methylococcus capsulatus (Bath). Biochemistry, 44(33), 10954–10965. https://doi.org/10.1021/bi050820u

Követelmények, D. (n.d.). Dolgozat követelmények – 2., 2.

Larsen, ??ivind, & Karlsen, O. A. (2016). Transcriptomic profiling of Methylococcus capsulatus (Bath)during growth with two different methane monooxygenases. MicrobiologyOpen, 5(2), 254–267. https://doi.org/10.1002/mbo3.324

Lawton, T. J., & Rosenzweig, A. C. (2016). Methane-Oxidizing Enzymes: An Upstream Problem in Biological Gas-to-Liquids Conversion. Journal of the American Chemical Society, 138(30), 9327– 9340. https://doi.org/10.1021/jacs.6b04568


Lemos, S. S., Perille Collins, M. L., Eaton, S. S., Eaton, G. R., & Antholine, W. E. (2000). Comparison of EPR-visible Cu(2+) sites in pMMO from Methylococcus capsulatus (Bath) and Methylomicrobium album BG8. Biophysical Journal, 79(2), 1085–1094. https://doi.org/10.1016/S0006-3495(00)76362-4

Lilla, M. (n.d.-a). Bacterial Transposons.

Lilla, M. (n.d.-b). Site directed mutagenesis.

Linné, K., Lyell, C., & Darwin, C. R. (n.d.). Követelmények Rendszerezés és Evolúció Linné - Kitaibel - Darwin.

Liu, T. (2015). ENZYMATIC SYNTHESIS OF POLY(LACTIC ACID) BASED POLYESTER CAPABLE OF FUNCTIONALIZATION.

Lloyd, J. S., Bhambra, A., Murrell, J. C., & Dalton, H. (1997). Inactivation of the regulatory protein B of soluble methane monooxygenase from Methylococcus capsulatus (Bath) by proteolysis can be overcome by a Gly to Gln modification. Eur. J. Biochem, 248, 72–79.

Lo, H. C., Haskel, A., Kapon, M., & Keinan, E. (2002). TpPt(IV)Me(H)2 forms a σ-CH4 complex that is kinetically resistant to methane liberation. Journal of the American Chemical Society, 124(13), 3226–3228. https://doi.org/10.1021/ja010464c

Lyell, C., Darwin, C. R., Malthus, T. R., Cuvier, G., Lamarck, J. B., Charles, A., ... Linné, B. K. (n.d.). Röpdolgozat Rendszerezés és evolúció Válaszlap.

M??ller, J. E. N., Meyer, F., Litsanov, B., Kiefer, P., Potthoff, E., Heux, S., ... Vorholt, J. A. (2015). Engineering Escherichia coli for methanol conversion. Metabolic Engineering, 28, 190–201. https://doi.org/10.1016/j.ymben.2014.12.008

Macalady, J. L., McMillan, A. M. S., Dickens, A. F., Tyler, S. C., & Scow, K. M. (2002). Population dynamics of type I and II methanotrophic bacteria in rice soils. Environmental Microbiology. https://doi.org/10.1046/j.1462-2920.2002.00278.x

Makarova, K. S., Grishin, N. V, Shabalina, S. A., Wolf, Y. I., & Koonin, E. V. (2006). A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biology Direct, 1(1), 7. https://doi.org/10.1186/1745-6150-1-7

Manuscript, A., Thomason, M. K., & Storz, G. (2011). Bacterial antisense RNAs: How many are there and what are they doing? Analysis, 324(614), 167–188. https://doi.org/10.1146/annurev-genet- 102209-163523.Bacterial

Martin, H., & Murrell, J. C. (1995). Methane monooxygenase mutants of Methylosinus trichosporium constructed by marker-exchange mutagenesis. FEMS Microbiology Letters, 127, 243–248. https://doi.org/10.1111/j.1574-6968.1995.tb07480.x

methylococcus_capsulatus. (n.d.).

Metu Ankara IGEM team. (2011). MethanE.COLIc : Decreasing the Greenhouse effects and Saving the workers life in one system. Retrieved from http://2011.igem.org/Team:METU-Ankara

Mocellin, S., & Provenzano, M. (2004). RNA interference: learning gene knock-down from cell physiology. Journal of Translational Medicine, 2(1), 39. https://doi.org/10.1186/1479-5876-2-39

Morita, T., Mochizuki, Y., & Aiba, H. (2006). Translational repression is sufficient for gene silencing by bacterial small noncoding RNAs in the absence of mRNA destruction. Proceedings of the National


Academy of Sciences of the United States of America, 103(13), 4858–63. https://doi.org/10.1073/pnas.0509638103

Murrell, J. C. (1992). Genetics and molecular biology of methanotrophs. FEMS Microbiology Reviews, 88, 233–248. https://doi.org/10.1111/j.1574-6968.1992.tb04990.x

Nakamura, T., Hoaki, T., Hanada, S., Maruyama, A., Kamagata, Y., & Fuse, H. (2007). Soluble and particulate methane monooxygenase gene clusters in the marine methanotroph Methylomicrobium sp. strain NI. FEMS Microbiology Letters, 277(2), 157–164. https://doi.org/10.1111/j.1574- 6968.2007.00953.x

Nakamura, T., Hoaki, T., Hanada, S., Maruyama, A., Kamagata, Y., Fuse, H., ... Murrell, J. C. (2007). Development and validation of promoter-probe vectors for the study of methane monooxygenase gene expression in Methylococcus capsulatus Bath. FEMS Microbiology Letters, 155(3), 157–164. https://doi.org/10.1111/j.1574-6968.2007.00953.x

Neuwirth, G., & Szemerszki, M. (2009). Tehetséggondozás a középiskolában, tehetségek a felsőoktatásban. Educatio, 18(2), 204–218.

No Title. (1950), 4–5.

No Title. (2016), 1–29.

November ard 2015 - bmat. (2015), (100575144), 6720.

Omay, D., & Guvenilir, Y. (2013). Synthesis and characterization of poly(d,l-lactic acid) via enzymatic ring opening polymerization by using free and immobilized lipase. Biocatalysis and Biotransformation, 31(3), 132–140. https://doi.org/10.3109/10242422.2013.795148

Park, D., & Lee, J. (2013). Biological conversion of methane to methanol. Korean Journal of Chemical Engineering, 30(5), 977–987. https://doi.org/10.1007/s11814-013-0060-5

Patel, R. N., & Hoare, D. S. (1971). Oxidation of C-1 Compounds capsulatus Physiological Studies of Methane and Methanol- Oxidizing Bacteria : Oxidation of C-1 Compounds by Methylococcus caps ulatus. JOURNAL OF BACTERIOLOGY, 107(I), 187–192.

pMMO(+sMMO részek)+copper binding cofactor (cbc). (n.d.).

Pratt, A. J., & MacRae, I. J. (2009). The RNA-induced silencing complex: A versatile gene-silencing machine. Journal of Biological Chemistry, 284(27), 17897–17901. https://doi.org/10.1074/jbc.R900012200

Protein sequence links_ML_04_09. (n.d.).

Protocol, E. (n.d.). Electroporation, 3–6.

Puri, A. W., Owen, S., Chu, F., Chavkin, T., Beck, D. A. C., Kalyuzhnaya, M. G., & Lidstrom, M. E. (2015). Genetic tools for the industrially promising methanotroph Methylomicrobium buryatense. Applied and Environmental Microbiology, 81(5), 1775–1781. https://doi.org/10.1128/AEM.03795-14

Rasmussen, L. C. V., Sperling-Petersen, H. U., & Mortensen, K. K. (2007). Hitting bacteria at the heart of the central dogma: sequence-specific inhibition. Microbial Cell Factories, 6, 24. https://doi.org/10.1186/1475-2859-6-24

References_ML_04_14. (n.d.).


Rhee, M. S., Moritz, B. E., Xie, G., Glavina del Rio, T., Dalin, E., Tice, H., ... Shanmugam, K. T. (2011). Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1. Standards in Genomic Sciences. https://doi.org/10.4056/sigs.2365342

Róbert, C., Kovács, T., Kornél, L., Levente, B., Tudományegyetem, S., Tanszék, B., ... Intézet, B. (2005). Szolubilis metán monooxigenáz rézfüggő szabályozásának vizsgálata Methylococcus capsulatus (Bath) törzsben.

Sander, J. D., & Joung, J. K. (2014a). CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology, 32(4), 347–55. https://doi.org/10.1038/nbt.2842

Sander, J. D., & Joung, J. K. (2014b). CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology, 32(4), 347–55. https://doi.org/10.1038/nbt.2842

Sauer, N. J., Narváez-Vásquez, J., Mozoruk, J., Miller, R. B., Warburg, Z. J., Woodward, M. J., ... Gocal, G. F. (2016). Oligonucleotide-mediated genome editing provides precision and function to engineered nucleases and antibiotics in plants. Plant Physiology, 170(April), pp.01696.2015. https://doi.org/10.1104/pp.15.01696

Sharpe, P. L., DiCosimo, D., Bosak, M. D., Knoke, K., Tao, L., Cheng, Q., & Ye, R. W. (2007). Use of transposon promoter-probe vectors in the metabolic engineering of the obligate methanotroph Methylomonas sp. strain 16a for enhanced C 40 carotenoid synthesis. Applied and Environmental Microbiology, 73(6), 1721–1728. https://doi.org/10.1128/AEM.01332-06

Sirajuddin, S., & Rosenzweig, A. C. (2015). Enzymatic oxidation of methane. Biochemistry, 54(14), 2283–2294. https://doi.org/10.1021/acs.biochem.5b00198

Stainthorpe, A. C., Lees, V., Salmond, G. P. C., Dalton, H., & Murrell, J. C. (1990). The methane monooxygenase gene cluster of Methylococcus capsulatus (Bath). Gene, 91(1), 27–34. https://doi.org/10.1016/0378-1119(90)90158-N

Stolyar, S., Costello, A. M., Peeples, T. L., & Lidstrom, M. E. (1999a). Role of multiple gene copies in particulate methane monooxygenase activity in the methane-oxidizing bacterium Methylococcus capsulatus Bath. Microbiology. https://doi.org/10.1099/13500872-145-5-1235

Stolyar, S., Costello, A. M., Peeples, T. L., & Lidstrom, M. E. (1999b). Role of multiple gene copies in particulate methane monooxygenase activity in the methane-oxidizing bacterium Methylococcus capsulatus Bath. Microbiology, 145(5), 1235–1244. https://doi.org/10.1099/13500872-145-5-1235

Stolyar, S., Costello, A. M., Peeples, T. L., & Lidstrom, M. E. (1999c). Role of multiple gene copies in particulate methane monooxygenase activity in the methane-oxidizing bacterium Methylococcus capsulatus Bath. Microbiology, 145(5), 1235–1244. https://doi.org/10.1099/13500872-145-5-1235

Stolyar, S., Franke, M., & Lidstrom, M. E. (2001). Expression of individual copies of Methylococcus capsulatus Bath particulate methane monooxygenase genes. Journal of Bacteriology, 183(5), 1810– 1812. https://doi.org/10.1128/JB.183.5.1810-1812.2001

Strong, P. J., Xie, S., & Clarke, W. P. (2015). Methane as a resource: Can the methanotrophs add value? Environmental Science and Technology. https://doi.org/10.1021/es504242n

Taguchi, S., Yamada, M., Matsumoto, K., Tajima, K., Satoh, Y., Munekata, M., ... Obata, S. (2008). A microbial factory for lactate-based polyesters using a lactate-polymerizing enzyme. Proceedings of the National Academy of Sciences, 105(45), 17323–17327. https://doi.org/10.1073/pnas.0805653105

The Effect of Copper Ions on Membrane Content and Methane Monooxygenase Activity in Methanol- grown Cells of Methylococcus capsulatus (Bath). (1985). Journal Qf’ General Microhiologv, 131, 155–163.


Tibor, P. (n.d.). A KIMUTATÁSI REAKCIÓ K GYAKORLATI, 201–364.

Timberlake, K. C. (2015). Chemistry - An Introduction to General, Organic and Biolgical Chemistry.

University of Kentucky. (n.d.). Molecular Absorption Spectroscopy : Determination of Iron with 1,10- phenanthroline, 30–34.

Unniyampurath, U., Pilankatta, R., & Krishnan, M. N. (2016). RNA interference in the age of CRISPR: Will CRISPR interfere with RNAI? International Journal of Molecular Sciences. https://doi.org/10.3390/ijms17030291

Vinet, B. (1987). An enzymic assay for the specific determination of methanol in serum. Clinical Chemistry, 33(12), 2204–2208.

Wang, Y., Tseng, C., Chen, Y., Huang, D., & Chan, S. I. (2003). Production of High-Quality Particulate Methane Monooxygenase in High Yields from, 185(20), 5915–5924. https://doi.org/10.1128/JB.185.20.5915

Ward, N., Larsen, Ø., Sakwa, J., Bruseth, L., Khouri, H., Durkin, A. S., ... Eisen, J. A. (2004). Genomic insights into methanotrophy: The complete genome sequence of Methylococcus capsulatus (Bath). PLoS Biology. https://doi.org/10.1371/journal.pbio.0020303

Wenyan Jiang, David Bikard, David Cox, Feng Zhang, and L. A. M. (2013). CRISPR-assisted editing of bacterial genomes. Nat Biotechnol, 31(3), 233–239. https://doi.org/10.1038/nbt.2508.CRISPR- assisted

West, C. A., Salmond, G. P. C., Dalton, H., & Murrell, J. C. (1992). Functional expression in {Escherichia}-coli of protein-{B} and protein-{C} from soluble methane monooxygenase of {Methylococcus}-capsulatus (bath). J Gen Microbiol, 138(JUL), 1301–1307.

West, C. A., Salmond, G. P. C., Dalton, H., & Murrell, J. C. (1992). Functional expression in Escherichia coli of proteins B and C from soluble methane monooxygenase of Methylococcus capsulatus (Bath). Journal of General Microbiology, 138, 1301–1.

Whittenbury, R., Phillips, K. C., & Wilkinson, J. F. (1970a). Enrichment, Isolation and Some Properties of Methane-utilizing Bacteria. J Gen Microbiol, 61(2), 205–218. https://doi.org/10.1099/00221287-61-2-205

Whittenbury, R., Phillips, K. C., & Wilkinson, J. F. (1970b). Enrichment , Isolation and Some Properties of Methane-utilizing Bacteria. Journal of General Microbiology, 61(61), 205–218.

Williams, E., & Bainbridge, B. W. (1971). Genetic transformation in Methylococcus capsulatus. The Journal of Applied Bacteriology, 34(4), 683–687. https://doi.org/10.1111/j.1365-2672.1971.tb01005.x

Yan, X., Chu, F., Puri, A. W., Fu, Y., & Lidstrom, M. E. (2016). Electroporation-based genetic manipulation in type I methanotrophs. Applied and Environmental Microbiology, 82(7), 2062–2069. https://doi.org/10.1128/AEM.03724-15

Yanagihara, K., Tashiro, M., Fukuda, Y., Ohno, H., Higashiyama, Y., Miyazaki, Y., ... Kohno, S. (2006). Effects of short interfering RNA against methicillin-resistant Staphylococcus aureus coagulase in vitro and in vivo. Journal of Antimicrobial Chemotherapy. https://doi.org/10.1093/jac/dki416

Yang, J. E., Choi, S. Y., Shin, J. H., Park, S. J., & Lee, S. Y. (2013). Microbial production of lactate- containing polyesters. Microbial Biotechnology, 6(6), 621–636. https://doi.org/10.1111/1751- 7915.12066


Ye, R. W., Yao, H., Stead, K., Wang, T., Tao, L., Cheng, Q., ... Miller, E. S. (2007). Construction of the astaxanthin biosynthetic pathway in a methanotrophic bacterium Methylomonas sp. strain 16a. Journal of Industrial Microbiology and Biotechnology, 34(4), 289–299. https://doi.org/10.1007/s10295-006-0197-x

Zahn, J. A., & Dispirito, A. A. (1996). Membrane-associated methane monooxygenase from Methylococcus capsulatus ( Bath ). Membrane-Associated Methane Monooxygenase from Methylococcus capsulatus ( Bath )†. JOURNAL OF BACTERIOLOGY, 178(4), 1018–1029.

Zhang, H., Kolb, F. A., Jaskiewicz, L., Westhof, E., & Filipowicz, W. (2004). Single processing center models for human Dicer and bacterial RNase III. Cell, 118(1), 57–68. https://doi.org/10.1016/j.cell.2004.06.017

Zsolt, B. (n.d.). 4. RNS interferencia.