The twelfth root of two
Prince Zhū Zàiyù (朱載堉; 1536 – 19 May 1611) of the Ming dynasty was a Chinese mathematician, astronomer, geographer, physicist, writer, choreographer, musician and music theorist. He has a place in the universal history of music for being the first to imagine and describe the equal temperament on which the tuning of modern musical instruments is based. To this end he calculated the twelfth root of two and its powers with 24 digits, for which it also occupies a place in the history of Chinese mathematics. He used a 2:5 abacus pair of 81 rods each for this numerical feat.
╔═══════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════╗ ║ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ║ ║ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ║ ║ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ║ ╠═══════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════╣ ║ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ║ ║ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ║ ║ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ║ ║ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ║ ║ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ║ ║ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ║ ╚═══════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════╝ ╔═══════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════╗ ║ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ║ ║ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ║ ║ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ║ ╠═══════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════╣ ║ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ║ ║ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ║ ║ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ║ ║ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ║ ║ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ║ ║ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ║ ╚═══════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════╝ |
Zhū Zàiyù (朱載堉; 1536 – 19 May 1611) abacus |
Of course we are not going to repeat his calculations here to such a degree of precision, we will limit ourselves to a smaller number of digits on a traditional 13-digit abacus,
╔═══════════════════════════╗ ║ ● ● ● ● ● ● ● ● ● ● ● ● ● ║ ║ ● ● ● ● ● ● ● ● ● ● ● ● ● ║ ║ │ │ │ │ │ │ │ │ │ │ │ │ │ ║ ╠═══════════════════════════╣ ║ │ │ │ │ │ │ │ │ │ │ │ │ │ ║ ║ ● ● ● ● ● ● ● ● ● ● ● ● ● ║ ║ ● ● ● ● ● ● ● ● ● ● ● ● ● ║ ║ ● ● ● ● ● ● ● ● ● ● ● ● ● ║ ║ ● ● ● ● ● ● ● ● ● ● ● ● ● ║ ║ ● ● ● ● ● ● ● ● ● ● ● ● ● ║ ╚═══════════════════════════╝ | or | ╔═══════════════════════════╗ ║ ● ● ● ● ● ● ● ● ● ● ● ● ● ║ ║ │ │ │ │ │ │ │ │ │ │ │ │ │ ║ ╠═══════════════════════════╣ ║ │ │ │ │ │ │ │ │ │ │ │ │ │ ║ ║ ● ● ● ● ● ● ● ● ● ● ● ● ● ║ ║ ● ● ● ● ● ● ● ● ● ● ● ● ● ║ ║ ● ● ● ● ● ● ● ● ● ● ● ● ● ║ ║ ● ● ● ● ● ● ● ● ● ● ● ● ● ║ ╚═══════════════════════════╝ |
Our abacus |
especially to show the efficiency of Newton's method for cube roots and abbreviated operations, which will allow us to obtain 7-8 digits of the twelfth root of two with such a modest instrument.
Since we can write
We can obtain this twelfth root by chaining two square roots and a cubic root. But first let's remember that
when , if we abuse this expression we obtain
a very imprecise value, but enough to show us that if we start calculating roots directly from two we will spend most of the time dividing by numbers that start with one; which is as uncomfortable as it is unnecessary. To avoid this, we will start by calculating square roots of
so that
What follows is a rather long calculation. It is assumed that the reader is already familiar with obtaining square roots by the method of half remainders (hankukuho) and cubic by Newton's method before undertaking a twelfth root, so that part of the calculations will be omitted and entrusted to the reader for brevity.
ABCDEFGHIJKLM
-------------
1250 First root digit is 3
0350 Subtract 3x3=9 from AB
0175 Divide by 2 in place
3175 Enter first root digit in A
... Continue as usual until the 6th root digit
-------------
3535531380955
Now the “accelerated phase” begins ...
ABCDEFGHIJKLM
-------------
3535531380955
Rule 1/3>3+1 (G)
3535533480955
-15
-09
-15
-15
-09
3535533320296
-045
3535533320295 Rule 3/3>9+3 (H)
3535533950295
-45
-27
-45
-45
3535533902100
-27
3535533902097 Rule 2/3>6+2 (J)
3535533906297
-1
+3
3535533905597
-25
-15
-25
3535533905329 Rule 3/3>9+3 (K)
3535533905959
-45
-27
3535533905911 Rule 1/3>3+1 (L)
3535533905932
-15
3535533905931 Rule 1/3>3+1 (M)
3535533905933 Compare to
-------------
ABCDEFGHIJKLM
-------------
3535533905933 First root digit is 5
1035533905933 Subtract 5x5 from AB
0517766952966 Divide by 2 in place
5517766952966 Enter first root digit in A
... Continue as usual until the 6th root digit
-------------
5946033314921
Accelerated phase:
ABCDEFGHIJKLM
-------------
5946033314921 Rule: 3/5>6+0 on G
5946036314921 cannot subtract 6x9=54 from HI, revise down
-1
+5
5946035814921
-45
-20
-30
-15
-125
5946035341904 Rule: 3/5>6+0 on H
5946035641904 cannot subtract 6x9=54 from IJ, revise down
-1
+5
5946035591904
-45
-20
-30
-15
5946035544603 Rule: 4/5>8+0 on I
5946035584603 cannot subtract 8x9=72 from JK, revise down
-1
+5
5946035579603
-63
-28
-42
5946035572981 Rule 2/5>4+0
5946035574981
-36
-16
5946035574605 Revise up
+1
-5946
5946035575010 Compare to
-------------
Now we could obtain
But to avoid dividing by numbers that start with one during Newton's method, we are going to multiply the previous amount by 25 but to avoid dividing by numbers that start with one during Newton's method, we are going to multiply the previous amount by 25 (dividing twice by two and multiplying by one hundred) so that.
ABCDEFGHIJKLM
-------------
5946035575
29730177875 divide by 2 in place
148650889375 divide by 2 in place
memorize or write down 148.650889 elsewhere… The first cube root digit is 5.
ABCDEFGHIJKLM Divide 148 by 5^2=25 (two digits)
-------------
148 25 Rule 1/2>5+0 on B
548 25
-25
523 25 Rule 2/2>9+2 on C
595 25
59 5 25 revise up D twice
+2
-50
592 25
10+ Add double of first root (5)
1592 3 Divide by 3, Rule 1/3>3+1 (two digits)
3692 3 Revise up B twice
5092 3 Revise up C three times
+3
-9
5302 3 5.3 is the next root approximation, square it on J-M
5302 9
+15
+15
+25
5302 2809
ABCDEFGHIJKLM
148651 2809 Enter 148.651 into B-G and divide (4 digits)
Rule: 1/2>5+0 on B
548651 2809
-40
-45
508201 2809 Revise up C twice
+2
-5618
522583 2809 Rule 2/2>9+2 on D
529783 2809
-72
-81
529 549 2809 Revise up E
+1
-2809
529126812809 Next digit is 9
52919
106+ Add double of first root (5.3)
158919 3 Divide by 3
…
52973 Next root is 5.297
...
ABCDEFGHIJKLM Divide 148.650889 by 5.297 (9 digits)
-------------
1486508895297
2427108895297
2803348895297
2806170695297
2806311785297
280631178 Clear J-M and reuse divisor space
2806321186
28063221266
280632222066
2806322234769
2806322239001
2806322239 Clear remainder
2806322239003209363790824995280347
ABCDEFGHIJKLM Divide 28.06322239 by 5.297 (8 digits)
-------------
2806322239
2806322239
5157822239
5251882239
5294209239
5297501339
5297924609
5297943421
52979462428
529794643092
5297946454435
529794645 Clear remainder and displace value to the right
ABCDEFGHIJKLM
-------------
529794645 Add twice the
+5297 previous root
+5297
1589194645
1589194645 3 Divide by 3
529731548
ABCDEFGHIJKLM Multiply by 2 ------------- in place or
529731548 divide by 5
1059463096
10594631 Round to 8 digits
Our final result:
1.0594631 |
compare it to
This work by Jesus Cabrera is marked with CC0 1.0 Universal