Published using Google Docs
Medical_Interventions_Course_Outline (1)
Updated automatically every 5 minutes

Follow the fictitious Smith family as you learn about the prevention, diagnosis, and treatment of disease.

Play the role of biomedical professionals to analyze case information and diagnose and treat your patients.  Investigate the medical interventions of the past and present, and begin to brainstorm the innovations of the  future.  

Medical Interventions (MI) allows students to investigate the variety of interventions involved in the prevention,  diagnosis, and treatment of disease as they follow the lives of a fictitious family. A “How-To” manual for maintaining  overall health and homeostasis in the body, the course will explore how to prevent and fight infection, how to  screen and evaluate the code in our DNA, how to prevent, diagnose, and treat cancer, and how to prevail when  the organs of the body begin to fail. Through these scenarios students will be exposed to the wide range of  interventions related to immunology, surgery, genetics, pharmacology, medical devices, and diagnostics. Each  family case scenario will introduce multiple types of interventions, reinforce concepts learned in the previous two  courses, and present new content. Interventions may range from simple diagnostic tests to treatment of complex  diseases and disorders. These interventions will be showcased across the generations of the family and will  provide a look at the past, present, and future of biomedical science. Lifestyle choices and preventive measures  are emphasized throughout the course as well as the important role that scientific thinking and engineering  design play in the development of interventions of the future.  

Students practice problem solving with structured activities and progress to open-ended projects and problems  that require them to develop planning, documentation, communication, and other professional skills.  

The following is a summary of the units of study that are included in the course for the 2014-2015 academic year.  Alignment with NGSS, Common Core, and other standards are available through the PLTW Alignment web-based  tool. Activities, projects, and problems are provided to the teacher in the form of student-ready handouts, teacher  notes, and supplementary materials, including resource documents, student response sheets, and presentations.

MI Unit Summary

Unit 1 How to Fight Infection (25%)

Unit 2 How to Screen What is in Your Genes (15%)

Unit 3 How to Conquer Cancer (30%)

Unit 4 How to Prevail When Organs Fail (30%)

Unit 1: How to Fight Infection

In this unit students are introduced to Sue Smith, the eighteen-year-old daughter of Mr. and Mrs. Smith. Sue is  a college freshman who is presenting symptoms of an unknown infectious disease which students eventually  identify as bacterial meningitis. Sue survives the infection but is left with hearing impairment. Through this case  students will explore the diagnostic process used to identify an unknown infection, the use of antibiotics as a  treatment, how bacteria develop antibiotic resistance, how hearing impairment is assessed and treated, and how  

vaccinations are developed and used to prevent infection.

How to Fight Infection Lesson Summary

Lesson 1.1 The Mystery Infection

Lesson 1.2 Antibiotic Treatment

Lesson 1.3 The Aftermath – Hearing Loss

Lesson 1.4 Vaccination

Lesson 1.1 The Mystery Infection

The goal of this lesson is to expose students to interventions involved in detecting, fighting, and preventing an  infectious disease as they investigate a potential outbreak at a fictitious college. Sue Smith, a freshman, thinks  she just has a cold, but further investigation will reveal something far more serious. Students will use various  techniques and technologies to diagnose Sue and determine the source of the disease on campus. They will  analyze clues found in the history and physical of each possible patient, identify pathogens present in body  fluids through DNA sequence analysis, and test for the infectious agent using the antibody-based Enzyme-linked  Immunosorbant Assay (ELISA). Students will be introduced to the field of bioinformatics as they explore genetic  databases to identify known gene sequences. At the conclusion of the investigation, students will outline a plan  to stop a potential outbreak on campus and discuss interventions such as antibiotic therapy and vaccination, two  topics to be explored in greater detail in the subsequent lessons.

Lesson 1.2 Antibiotic Treatment

In this lesson students will review bacterial structure and investigate the mechanisms by which DNA from one  bacterial cell is transferred to another. Students then explore various types of antibiotics and their mode of action  against the bacteria they target. They suggest an antibiotic treatment for Sue Smith, as she was diagnosed with a  bacterial infection in the previous lesson. Finally, students look at the propagation of antibiotic resistant bacteria  and how the misuse of antibiotics plays a role in the development of antibiotic resistant bacteria.

Lesson 1.3 The Aftermath – Hearing Loss

The goal of this lesson is to introduce students to the auditory system. Students will investigate the physics of  sound, learn how hearing works, and conduct a variety of hearing assessments. Students will be assigned a patient  with a specific type of hearing loss. Using the assigned patient case study, students will explore how damage to the  outer, middle, and/or inner ear results in hearing loss. Students will learn how to interpret audiograms and match  up their patient case study with the corresponding audiogram. Students will then use what they have learned  to make a recommendation as to what intervention is the most appropriate for the patient case study. Finally,  students will investigate the science behind cochlear implants and debate the use of this medical intervention.  

Lesson 1.4 Vaccination

The goal of this lesson is for students to explore infectious disease prevention and the development of vaccinations.  Students will discuss the impact vaccination has had on public health over the years and interpret how vaccines  have altered disease trends. Students will review how vaccines work in the body and relate this mechanism to the  workings of the human immune system. Students will explore the techniques scientists use to produce vaccines.  They will delve deeper into the science of recombinant DNA technology and learn how genetic engineering can be  used to manufacture viable vaccines. Students will engineer a paper plasmid to produce a viral protein that can be used as a vaccine. Finally, students will explore the career field of epidemiology. Working as epidemiologists, they  will brainstorm steps and questions needed to deal with a potential outbreak, analyze data to gather evidence,  design epidemiologic studies, and design and implement prevention and treatment strategies.  

Unit 2: How to Screen What is in Your Genes

In this unit students are introduced to Mr. and Mrs. Smith, Sue’s parents. Mr. and Mrs. Smith are very excited to find  out they are expecting a new baby. Because the couple is in their early 40s, the doctor has suggested genetic  screening and testing. Through this case students will explore how to screen and evaluate the code in our DNA,  the value of good prenatal care, and the future of genetic technology.  

How to Screen What is in Your Genes Lesson Summary

Lesson 2.1 Genetic Testing and Screening

Lesson 2.2 Our Genetic Future

Lesson 2.1 Genetic Testing and Screening

The goal of this lesson is for students to examine the available types of genetic testing and screening and discuss  ethical implications of these tests. Assuming the role of genetic counselors, students will analyze a patient case  concerning issues of genetic testing and provide appropriate recommendations. Next, students will explore  molecular techniques necessary to complete a genetic test. They will use the tools of molecular biology to extract  their own DNA, amplify a part of the gene for bitter-tasting ability, identify their own gene sequence by restriction  digest, and view their resultant genotype using gel electrophoresis. Students then have a chance to test their  own phenotype and see how well this genotype predicts their own ability. Finally, students will investigate the  interventions that exist to help protect and monitor a growing fetus.

Lesson 2.2 Our Genetic Future

The goal for this lesson is for students to examine how the study of genetics will alter the way doctors and scientists  treat disease and the way humans reproduce. Students will learn about gene therapy, debate its safety, and write  a policy statement highlighting guidelines and restrictions on gene therapy testing and research. Students will  examine available reproductive technology and debate and discuss medical interventions of the future.  

Unit 3: How to Conquer Cancer

In this unit students are introduced to Mike Smith, the sixteen-year-old son of Mr. and Mrs. Smith. Mike is diagnosed  with osteosarcoma, a type of bone cancer that often affects teenagers. Mike’s treatments put him into remission;  however, in order to remove all of the cancerous tissue, he had to have most of his arm amputated. Mike now  needs a prosthesis. Through this case students will explore the diagnostic process used to determine the presence  of cancerous cells, the risk factors and prevention of cancer, rehabilitation after disease or injury, and the design  process for new medications, prosthetics, and nanotechnology.

How to Conquer Cancer Lesson Summary

Lesson 3.1 Detecting Cancer

Lesson 3.2 Reducing Cancer Risk  

Lesson 3.3 Treating Cancer

Lesson 3.4 Building a Better Cancer Treatment

Lesson 3.1 Detecting Cancer

In this lesson students will be introduced to Mike Smith, the sixteen year old son in the Smith family. For the last  couple of months, Mike has been experiencing pain in his upper arm that may be indicative of cancer. Through  the exploration of Mike’s case, students will explore techniques used to diagnose Mike’s particular cancer,  including diagnostic imaging and examination of cancerous tissue. Students will look at the physiology of cancer  and investigate the genes involved with cancer. Students will examine the technology that is being used to give  researchers a better understanding of the differences in gene expression in both cancer cells and normal cells.  Students learn ways that this technology is being used to potentially develop personalized medicine for treating  cancer.

Lesson 3.2 Reducing Cancer Risk

The goal of this lesson is for students to look at some of the risk factors associated with cancer by exploring the  various situations which cause changes to our DNA. In particular, students will investigate mutations caused by  UV light, mutations that are inherited, as well as mutations caused by viruses. Students will design and perform  an experiment to test the effectiveness of various sunscreens or types of cloth against UV light as they attempt  to protect UV-sensitive yeast cells. They will analyze marker analysis results in order to diagnose a BRCA2 gene  mutation associated with breast cancer, play the role of a virologist working with viruses associated with cancer,  and create a timeline of routine cancer screenings we must complete in our lifetime. Throughout the lesson  students will look at lifestyle choices that can reduce the chances that a person will develop particular types of  cancer.

Lesson 3.3 Treating Cancer

The goal of this lesson is for students to follow Mike Smith as he progresses through treatment for his osteosarcoma.  Students will learn about the treatments available for cancer patients, as well as the therapies available to help  patients cope with the pain associated with treatment. This lesson begins with an introduction to chemotherapy  and radiation therapy. Next students investigate biofeedback therapy. They will use data acquisition software  to monitor their body’s reaction to stress and test methods to reduce their response level. Students learn that  Mike will have to have his arm amputated to prevent further tumor growth. Through this scenario students will  study prosthetic limb technologies, design and build a model prosthetic arm, and explore the role physical and  occupational therapists play in a patient’s rehabilitation following amputation surgery.

Lesson 3.4 Building a Better Cancer Treatment

The goal of this lesson is for students to explore the future of cancer treatment. Students will begin this lesson  with an investigation into how one drug can cause varied effects in similar patients and learn about personalized  medicine, also known as pharmacogenetics. Students will then investigate the set-up of clinical trials and consider  the ethics governing clinical trials. Students will study the nanoscale and the possible application of nanotechnology  in medicine. Finally, students will research the variety of nanotechnologies currently being developed for the diagnosis and treatment of cancer. They will use everything they have learned in this unit to design their own  nanotechnology-based cancer treatment and design a clinical trial to test the safety and efficacy of their designed  treatment.

Unit 4: How to Prevail When Organs Fail

In this unit students are introduced to Mrs. Jones, the forty-four-year-old sister of Mrs. Smith. Mrs. Jones has been  struggling with Type 1 Diabetes for twenty years. Over the years, Mrs. Jones did not take good care of herself or  properly control her diabetes. She eventually began using an insulin pump and changed her lifestyle to regulate  her blood sugar levels, but the damage had already been done. Mrs. Jones is now dealing with end stage renal  failure and needs a kidney transplant. Through this case students will explore protein production, blood sugar  regulation, dialysis, organ donation and transplantation, and non-invasive surgery techniques. In addition students  will create a bionic human.

How to Prevail When Organs Fail Lesson Summary

Lesson 4.1 Manufacturing Human Proteins

Lesson 4.2 Organ Failure

Lesson 4.3 Transplant

Lesson 4.4 Building a Better Body

Lesson 4.1 Manufacturing Human Proteins

The goal of this lesson is for students to investigate the biomanufacturing of human proteins used for medical  interventions. They will first use the process of bacterial transformation to insert a plasmid containing the gene  for green fluorescent protein (GFP) into E. coli cells. Students will then use chromatography to separate the GFP  protein from the other proteins in the bacterial cells. They will collect proteins in differential fractions and analyze  the contents of these fractions using gel electrophoresis. Students will relate their molecular work to the case  of Diana Jones, who is a Type 1 diabetic on insulin therapy. Without insulin produced by the biomanufacturing  process explored in this lesson, she would have died long ago. As the unit progresses, students will research and  design other medical interventions that will help Diana in her battle with diabetes and renal failure.

Lesson 4.2 Organ Failure

The goal of this lesson is for students to use problem solving and critical thinking skills to solve Diana Jones’  medical mystery. Students will investigate Diana’s symptoms, suggest further diagnostic tests, and use information  they find to piece together the clues provided to make a diagnosis and suggest the best treatment option.

Lesson 4.3 Transplant

In Lesson 4.2 students diagnosed Diana Jones with End Stage Renal Disease. In this lesson students will follow  Diana as she goes through the transplant process. Students will learn about organ allocation policies by deciding  which of two matching patients should receive a donated kidney. Students then learn that members of Diana’s  family have offered to be potential living donors and must determine who should donate their kidney to Diana  based on blood type and tissue type. Students will then practice laparoscopic and general surgery techniques  and investigate the members of the transplant team involved along the transplant path. Students conclude the lesson by investigating the similarities and differences between kidney transplants and heart transplants.

Lesson 4.4 Building a Better Body

The goal of this lesson is for students to investigate some of the technologies researchers are exploring as they  strive to replace damaged organs, including xenotransplantation and tissue engineering. Students will investigate  how these technologies work and then construct an argument from the perspective of different stakeholders  arguing over whether or not further research for these interventions should be banned. In the final activities,  students will have the chance to reflect on everything they have explored in this course. They will think about how  science is changing the ability of humans to survive in the face of illness and injury and use what they learned  during the course to design their own version of a super human. As they review the Smith family tree, students will  reflect on the role medical interventions play in preventing, diagnosing, and treating disease. Finally, students will  consider their own career aspirations.

Page 6

© 2016 Project Lead The Way © Project Lead The Way