Published using Google Docs
Lesson 6.3: Rotations
Updated automatically every 5 minutes

Geometry

Lesson 6.3: Rotations

Notes

NOTES

  • A rotation uses a fixed point to turn a figure around, or about.http://www.freelearningchannel.com/l/Content/Materials/Mathematics/Geometry/textbooks/CK12_Geometry/html/12/ck12_4_files/20130325223109703317.png
  • The fixed point is called the center of rotation, or pivot point.
  • The angle of rotation is the angle formed by lines connecting the pre-image to the center and the image to the center.
  • Rotations in the coordinate plane
  1. Rotation 90° counter-clockwise about the origin
  • Switch coordinates and make the point fit the quadrant.

<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow></mfenced><mo>&#x2192;</mo><mfenced><mrow><mo>-</mo><mi>y</mi><mo>,</mo><mi>x</mi></mrow></mfenced></math>

  1. Rotation 90° clockwise about the origin         [or 270o CCW]        
  • Switch coordinates and make the point fit the quadrant.

<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow></mfenced><mo>&#x2192;</mo><mfenced><mrow><mi>y</mi><mo>,</mo><mo>-</mo><mi>x</mi></mrow></mfenced></math>

  1. Rotation 180° about the origin
  • Leave coordinate order alone, but make both of them the opposite sign.                <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow></mfenced><mo>&#x2192;</mo><mfenced><mrow><mo>-</mo><mi>x</mi><mo>,</mo><mo>-</mo><mi>y</mi></mrow></mfenced></math>
  • IF YOU ARE NOT GIVEN A DIRECTION, ASSUME TO GO COUNTER-CLOCKWISE.
  • A figure has rotational symmetry if it can be rotated onto itself, using its center as the center of rotation, in 180° or less in either direction.

EXAMPLE 1 – Name the coordinates of the vertices of the image after the given rotation.

  1. 90° clockwise
  1. 90° counter-clockwise
  1. 180°
  1. 270° clockwise

EXAMPLE 2 – Determine whether the figure has rotational symmetry. IF SO, DESCRIBE THE ROTATIONS THAT MAP THE FIGURE ONTO ITSELF.