Published using Google Docs
Lesson 5.1: Properties of Parallelograms
Updated automatically every 5 minutes

Geometry

Lesson 5.1: Properties of Parallelograms

Notes

QUADRILATERALS NOTES

Interior Angles of a Quadrilateral Corollary

  • The interior angles of a quadrilateral add up to 360°.

EXAMPLE 1 – Solve for x.

PARALLELOGRAM NOTES

  • A  parallelogram is a quadrilateral with both pairs of opposite sides parallel.
  • Below are 4 important theorems regarding the properties of parallelograms:

Parallelogram Opposite Sides Theorem

  • Opposite sides are congruent in parallelograms.        
  • So set opposite sides equal to each other.

{"font":{"size":"10","color":"#000000","family":"Calibri"},"type":"$","backgroundColor":"#ffffff","aid":null,"id":"2-0","code":"$\\overline {PQ}\\cong \\overline {RS}$","ts":1667935290209,"cs":"p5WiGbPltVcGYcnU4LiL0g==","size":{"width":66,"height":16}} and {"type":"$","code":"$\\overline {QR}\\cong \\overline {PS}$","id":"3-0","backgroundColor":"#ffffff","font":{"family":"Calibri","color":"#000000","size":"10"},"aid":null,"ts":1667935302434,"cs":"58HMQkA5ZuWoKf6vpujEoA==","size":{"width":66,"height":16}}        

Parallelogram Opposite Angles Theorem

  • Opposite angles are congruent in parallelograms.
  • So set opposite sides equal to each other.

{"id":"4","backgroundColor":"#ffffff","type":"$","font":{"family":"Calibri","color":"#000000","size":"10"},"code":"$\\angle P\\cong \\angle R$","aid":null,"ts":1667935381194,"cs":"BNuaQWUXFsSDXX17LiyShw==","size":{"width":65,"height":10}} and {"id":"5","font":{"color":"#000000","size":"10","family":"Calibri"},"code":"$\\angle Q\\cong \\angle S$","aid":null,"type":"$","backgroundColor":"#ffffff","ts":1667935396290,"cs":"5ptrQ+/ftfa3EAExIbpGtQ==","size":{"width":64,"height":13}}

Parallelogram Consecutive Angles Theorem

  • Consecutive angles are supplementary in parallelograms.
  • BE SURE TO ADD ANGLES IN NEIGHBORING CORNERS AND SET EQUAL TO 180°.

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>&#x2220;</mo><mi>P</mi><mo>+</mo><mi>m</mi><mo>&#x2220;</mo><mi>Q</mi><mo>=</mo><mn>180</mn><mo>&#xB0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>m</mi><mo>&#x2220;</mo><mi>P</mi><mo>+</mo><mi>m</mi><mo>&#x2220;</mo><mi>S</mi><mo>=</mo><mn>180</mn><mo>&#xB0;</mo><mspace linebreak="newline"/><mi>m</mi><mo>&#x2220;</mo><mi>Q</mi><mo>+</mo><mi>m</mi><mo>&#x2220;</mo><mi>R</mi><mo>=</mo><mn>180</mn><mo>&#xB0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mo>&#xA0;</mo><mi>m</mi><mo>&#x2220;</mo><mi>R</mi><mo>+</mo><mi>m</mi><mo>&#x2220;</mo><mi>S</mi><mo>=</mo><mn>180</mn><mo>&#xB0;</mo></math>

Parallelogram Diagonals Theorem

  • The diagonals of a parallelogram bisect each other.
  • So, set the parts of the same diagonal equal to each other.

{"backgroundColor":"#ffffff","backgroundColorModified":false,"font":{"size":"11","color":"#000000","family":"Calibri"},"id":"2-1","type":"$","aid":null,"code":"$\\overline {PM}\\cong \\overline {MR}$","ts":1667936868144,"cs":"eHizFxmOepwzZoMLAOwxDA==","size":{"width":72,"height":13}} and {"backgroundColorModified":false,"code":"$\\overline {QM}\\cong \\overline {MS}$","aid":null,"backgroundColor":"#ffffff","id":"3-1","font":{"family":"Calibri","color":"#000000","size":"11"},"type":"$","ts":1667936894477,"cs":"q6xzYx4xPa74iex0JN7ywA==","size":{"width":72,"height":16}}        

EXAMPLE 2 – Find the indicated measure in parallelogram HIJK.

  1. HI =
  1. KH =

  1. KG =
  1. HJ =
  1. mHIJ =
  1. mKJI =
  1. mHIG=
  1. mIKH =

EXAMPLE 3 – Find the value of each variable in the parallelogram.