Nama : Nanang Sriyadi, S.Pd

No. UKG : 201698434226

LK 1: Lembar Kerja Belajar Mandiri

lud.	ıl Modul	Kalkulus dan Trigonomotri
Judul Modul		Kalkulus dan Trigonometri
Judi	ıl Kegiatan Belajar (KB)	 Fungsi Trigonometri Fungsi, Jenis Fungsi, dan Limit Fungsi
		3. Turunan dan Aplikasi Turunan
		4. Antiturunan, Integral, dan Aplikasi Integral
No	Butir Refleksi	Respon/Jawaban
1	Daftar peta konsep	KB 1. Fungsi Trigonometri
	(istilah dan definisi) di	Trigonometri adalah ilmu yang mempelajari tentang hubungan antara
	modul ini	sisi dan sudut dari suatu segitiga serta fungsi dasar yang muncul dari
		relasi tersebut.
		1. Identitas Fungsi Trigonometri
		a) Definisi dasar nilai fungsi trigonometri
		Identitas trigonomtri adalah kesamaan yang membuat
		perbandingan trigonometri dari suatu sudut
		B N
		mi
		de
		α
		A sa C

Sifat dari fungsi trigonometri

- $1. \quad \sin^2\theta + \sin^2\theta = 1.$
- 2. Jika $\cos \theta \neq 0$, maka $1 + \tan^2 \theta = \sec^2 \theta$.
- 3. Jika $\sin \theta \neq 0$, maka $1 + \cot^2 \theta = \csc^2 \theta$.
- 4. $\sin(-\theta) = -\sin\theta \, \operatorname{dan} \cos(-\theta) = \cos\theta$.
- 5. $\sin\left(\frac{\pi}{2} \theta\right) = \cos\theta \, \operatorname{dan} \cos\left(\frac{\pi}{2} \theta\right) = \sin\theta.$
- 6. $\sin\left(\frac{\pi}{2} + \theta\right) = \cos\theta \, \operatorname{dan} \cos\left(\frac{\pi}{2} + \theta\right) = -\sin\theta$.
- 7. $\sin(\pi \theta) = \sin \theta \, \operatorname{dan} \, \cos(\pi \theta) = -\cos \theta$.
- 8. $\sin(\pi + \theta) = -\sin\theta \, \text{dan } \cos(\pi + \theta) = -\cos\theta.$
- 9. $\sin\left(\frac{3\pi}{2} \theta\right) = -\cos\theta \, \operatorname{dan} \cos\left(\frac{3\pi}{2} \theta\right) = -\sin\theta$.
- 10. $\sin\left(\frac{3\pi}{2} + \theta\right) = -\cos\theta \, \operatorname{dan} \cos\left(\frac{3\pi}{2} + \theta\right) = \sin\theta.$
- 11. $\sin(2\pi \theta) = -\sin\theta \, \text{dan} \, \cos(2\pi \theta) = \cos\theta.$
- 12. $\sin(2\pi + \theta) = \sin\theta \, \text{dan} \, \cos(2\pi + \theta) = \cos\theta.$
- b) **Aturan sinus** menjelaskan hubungan antara perbandingan panjang sisi yang berhadapan dengan sudut terhadap sinus sudut pada segitiga.

Pada suatu segitiga ABC berlaku

Aturan sinus

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Perluasan Aturan Sinus

$$\frac{a}{Sin A} = \frac{b}{Sin B} = \frac{c}{Sin C} = 2R$$

R merupakan jari-jari lingkaran luar segitiga

c) **Aturan Cosinus** menjelaskan hubungan antara kuadrat panjang sisi dengan nilai cosinus dari salah satu sudut pada segitiga.

$$a^2 = b^2 + c^2 - 2bc \cos \cos A$$

$$b^2 = a^2 + c^2 - 2ac\cos cos B$$

$$c^2 = a^2 + b^2 - 2bc \cos \cos C$$

d) Periode dan amplitudo fungsi trigonometri

Sebuah fungsi f dikatakan periodik jika terdapat sebuah bilangan positif p sehingga $f(x + p) = f(x) \ \forall x \in Df$. **Nilai p** terkecil disebut periode

2. Invers Fungsi Trigonometri

- a) Invers fungsi sinus
- b) Invers fungsi cosinus
- c) Invers fungsi tan
- d) Identitas invers fungsi trigonometri

3. Rumus jumlah dan selisih fungsi trigonometri.

a) Identitas jumlah dan selisih sudut

$$cos(\alpha \pm \beta) = cos\alpha.cos\beta \mp sin\alpha.sin\beta$$

 $sin(\alpha \pm \beta) = sin\alpha.cos\beta \pm cos\alpha.sin\beta$
 $tan(\alpha \pm \beta) =$

b) Identitas sudut ganda

$$\cos(2\alpha) = \cos 2 \alpha - \sin 2 \beta$$
$$= 2\cos 2 \alpha - 1$$
$$= 1 - 2\sin 2 \alpha$$

c) Identitas setengah sudut

$$\sin\left(\frac{\alpha}{2}\right) = -\sqrt{\frac{1 - \cos\alpha}{2}} \vee \sin\left(\frac{\alpha}{2}\right) = \sqrt{\frac{1 - \cos\alpha}{2}}$$
$$\cos\left(\frac{\alpha}{2}\right) = -\sqrt{\frac{1 + \cos\alpha}{2}} \vee \cos\left(\frac{\alpha}{2}\right) = \sqrt{\frac{1 + \cos\alpha}{2}}$$

d) Identitas jumlah fungsi trigonometri

$$\sin x + \sin y = 2\sin\left(\frac{x+y}{2}\right).\cos\left(\frac{x-y}{2}\right)$$
$$\cos x + \cos y = 2\cos\left(\frac{x+y}{2}\right).\cos\left(\frac{x-y}{2}\right)$$

e) Identitas perkalian fungsi trigonometri

$$\sin x \cdot \sin y = -\frac{1}{2} [\cos(x+y) - \cos(x-y)]$$

$$\cos x \cdot \cos y = \frac{1}{2} [\cos(x+y) + \cos(x-y)]$$

$$\sin x \cdot \cos y = \frac{1}{2} [\sin(x+y) + \sin(x-y)]$$

KB.2 Fungsi, Jenis Fungsi, dan Limit Fungsi

- 1. Fungsi, Jenis Fungsi dan Operasi pada Fungsi
 - a) Pengertian Fungsi

Suatu fungsi f dari himpunan A ke B merupakan pasangan terurut $f \subset A \times B$ sedemikian sehingga memenuhi:

(1)
$$\forall x \in A \exists y \in B \ni (x,y) \in f \text{ dan }$$

$$(2) (x,y) \in f \operatorname{dan}(x,z) \in f \Rightarrow y = z$$

b) Jenis Fungsi

- Jenis fungsi berdasarkan sifatya dibedakan menjadi
 - Fungsi satu-satu (injektif) Misalkan fungsi $f: A \rightarrow B$. Fungsi f dikatakan satu-satu atau injektif (injective) jika untuk setiap dua unsur beda di A mempunyai peta yang beda. Definisi ini dapat disajikan secara formal sebagai berikut: Fungsi f dikatakan satu-satu: $\forall x1, x2$ di $A, x1 \neq x2$ $\Rightarrow f(x1) \neq f(x2)$.
 - Fungsi pada (surjektif)
 Dipunyai fungsi f: A → B. Fungsi f dikatakan pada atau surjektif (surjective)
 jika Rf = B. Definisi ini dapat disajikan secara formal sebagai berikut:
 Fungsi f dikatakan surjektif jika ∀ x ∈ B, ∃y ∈ A ∋ f(y) = x.
 - Fungsi bijektif
 Fungsi f: ℝ → ℝ dikatakan bijektif apabila fungsi f
 merupakan fungsi injektif dan
 sekaligus surjektif
- Jenis fungsi berdasarkan kemonotonannya dibedakan menjadi:
 - Fungsi naik
 Dipunyai fungsi f: A → B. Fungsi f dikatakan naik
 jika fungsi f melestarikan
 urutan. Definisi ini dapat disajikan secara formal
 sebagai berikut:
 Fungsi f dikatakan naik: ∀ x, y ∈ A, x < y ⇒ f(x) <
 f(y).

- Fugsi turun Dipunyai fungsi $f: A \rightarrow B$. Fungsi f dikatakan turun jika fungsi f tak melestarikan urutan. Definisi ini dapat disajikan secara formal sebagai berikut: Fungsi f dikatakan turun: $\forall x, y \in A, x < y \Longrightarrow f(x) >$ f(y).
- Fungsi-fungsi yang tergolong jenis fungsi aljabar di antaranya
 - Fungsi trigonometri
 - Fungsi invers trigonometri (siklometri)
 - Fungsi logaritma asli,
 - Fungsi eksponensial
 - Fungsi hiperboliks
- Fungsi-fungsi yang tergolong jenis fungsi aljabar di antaranya:
 - fungsi linier, fungsi kuadrat, fungsi kubik, dan seterusnya yang dikenal sebagai fungsi polinomial, Fungsi polinomial mempunyai bentuk f(x) = anx $n + \ldots + a2x$ 2 + a1x + a0, pangkat tertingginya menunjukkan orde atau derajat dari fungsi polinomial tersebu
 - fungsi rasional suatu fungsi berbentuk $f(x) = \frac{P(x)}{Q(x)}$ dengan P(x) dan Q(x) adalah polinomial atau suku banyak dalam x dan $Q(x) \neq 0$
 - fungsi irrasional fungsi aljabar yang mengandung faktor penarikan akar. Bentuk umumnya $f(x) = \sqrt[n]{g(x)}$ dengan g(x) > 0
- Terdapat juga jenis fungsi khusus:
 - fungsi dengan nilai mutlak (modulus)
 - fungsi ganjil/genap.
 - fungsi periodik
 - fungsi tangga.

c) Operasi pada Fungsi

Misalkan f dan g adalah fungsi-fungsi dan k suatu konstanta, maka:

(a)
$$(f + g)(x) = f(x) + g(x)$$

(b)
$$(f - g)(x) = f(x) - g(x)$$

(c)
$$kg(x) = k.g(x)$$

(d)
$$(f.g)(x) = f(x).g(x)$$

(e)
$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}, g(x) \neq 0$$

2. Komposisi Fungsi dan Fungsi Invers

a) Komposisi Fungsi

Dipunyai fungsi-fungsi f dan g dengan $Rg \cap Df \neq \emptyset$. Fungsi komposisi $f \circ g$ didefinisikan sebagai $(f \circ g)(x) = f[g(x)] \ \forall \ x \in Rg \cap Df$.

b) Invers Fungsi Misalkan fungsi $f: A \to B$. Jika terdapat fungsi $g: Rf \to A$ sehingga nilai-nilai g[f(x)] = x, $\forall x \in A$ maka

fungsi g disebut invers f dan ditulis $g = f^{-1}$

3. Limit Fungsi

- a) Barisan dan limit barisan Barisan adalah suatu fungsi yang domainnya adalah himpunan bilangan bulat positif atau bilangan asli (*N*) atau himpunan bagiannya.
- b) Limit Fungsi

Dipunyai $\lim_{x \to a} f(x) = L$, $\lim_{x \to a} g(x) = M$, dan K sembarang

(a)
$$\lim_{x \to a} (f(x) + g(x)) = L + M$$

(b)
$$\lim_{x \to a} K. f(x) = K \cdot L$$

(c)
$$\lim_{x \to a} f(x) \cdot g(x) = L \cdot M$$

(d)
$$\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{L}{M}$$
, jika $M \neq 0$.

c) Limit fungsi trigonometri

(a)
$$\lim_{x \to a} \sin x = \sin a$$

(b)
$$\lim_{x \to a} \cos x = \cos a$$

(c)
$$\lim_{x \to a} \tan x = \tan a$$

(d)
$$\lim_{x \to a} \csc x = \csc a$$

(e)
$$\lim_{x \to a} \sec x = \sec a$$

(f)
$$\lim_{x \to a} \cot x = \cot a$$

4. Limit Sepihak

Dipunyai fungsi $f:(a,b)\to\mathbb{R}$, dan c di selang (a,b). Limit fungsi f untuk x

mendekati c dari kanan adalah L, ditulis dengan

 $\lim x \rightarrow c +$

$$f(x) = L$$

jika dan hanya jika untuk setiap $\varepsilon > 0$ terdapat $\delta > 0$ sehingga |f(x)| = L |f(x)|

apabila $c < x < c + \alpha$

Dipunyai fungsi $f:(a,b)\to\mathbb{R}$, dan c di selang (a,b). Limit fungsi f untuk x

mendekati c dari kiri adalah L, ditulis dengan

 $\lim x \rightarrow c -$

f(x) = L

jika dan hanya jika untuk setiap ε > 0 terdapat δ > 0 sehingga $|f(x) - L| < \varepsilon$

apabila $c - \delta < x < c$.

5. Limit Tak Hingga dan Limit di Tak Hingga

Dipunyai fungsi $f: \mathbb{R} - \{a\} \rightarrow \mathbb{R}$.

 $\lim x \rightarrow a$

$$f(x) = +\infty \Leftrightarrow \forall M > 0 \exists \delta > 0 \ni f(x) > M \text{ apabila } 0 < |x - \alpha| < \delta.$$

Dipunyai fungsi $f: \mathbb{R} \to \mathbb{R}$.

$$\lim_{x\to +\infty} f(x) = L \ \forall \varepsilon > 0 \ \exists \ M > 0 \ \ni |f(x) - L| < \varepsilon$$
 apabila $x > M$.

6. Kekontinuan Fungsi

Syarat untuk suatu fungsi dikatakan kontinu: yaitu

- 1. f(x) ada
- 2. f(c)ada
- $3. \ f(x) = f(c)$

KB. 3 Turunan dan Aplikasi Turunan

- 1. Definisi dan Rumus-rumus Turunan Fungsi
 - a. Definisi

Salah satu masalah yang mendasari munculnya kajian tentang turunan adalah gradien garis singgung (m). gradien garis singgung f di titik P dapat diperoleh dari gradien garis PQ dengan Q sangat dekat dengan P. Dengan kata lain, gradien garis singgung f di titik P (dinotasikan dengan m) dapat diperoleh dengan

$$m = \lim_{Q \to P} m_{PQ} = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}.$$

b) Turunan Fungsi

Turunan dari fungsi f adalah fungsi f' dengan

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

- c) Teorema-teorema turunan
 - Jika f'(c) ada maka f kontinu pada c

.

.

.

.

d) Aturan rantai

Aturan rantai didasari dari turunan fungsi komposisi. Jika g mempunyai turunan di x dan f mempunyai turunan di g(x) Maka

$$\frac{d[(f\circ g)(x)]}{dx} = \frac{d[(f\circ g)(x)]}{d[g(x)]} \cdot \frac{d[g(x)]}{dx} = f'[g(x)] \cdot g'(x).$$

Mis:
$$y = (f \circ g)(x) dan u = g(x)$$

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

- 2. Turunan Fungsi Implisit dan Fungsi Invers
 - a. Turunan fungsi implisit

penulisan variabel x dan y dalam nilai fungsi berada pada ruas yang berbeda atau dituliskan sebagai y = f(x).

Fungsi yang nilai fungsinya disajikan dalam ruas yang berbeda yaitu

y = f(x) disebut fungsi eksplisit.

b. Turunan Fungsi Invers

Jika f mempunyai turunan pada $I \subset \mathbb{R}$ dan $f'(x) \neq 0$ pada I maka

 f^{-1} mempunyai turunan pada f(I) dan dapat ditentukan dengan

$$(f^{-1})'(x) = \frac{1}{f'[f^{-1}(x)]}$$
 atau $\frac{dx}{dy} = \frac{1}{\frac{dy}{dx}}$.

3. Aplikasi Turunan

Berkaitan dengan nilai ekstrim suatu fungsi yang mencakup nilai ekstrim maksimum dan nilai ekstrim minimum

Diberikan fungsi $f:I \to \mathbb{R}, I \subseteq \mathbb{R}$, dan M = f(c) untuk suatu $c \in I$.

- (a) M merupakan nilai maksimum (mutlak) f apabila $M \ge f(x) \ \forall x \in I$.
- (b) M merupakan nilai minimum (mutlak) f apabila $M \le f(x) \ \forall x \in I$..
- (c) Nilai maksimum dan minimum suatu fungsi disebut nilai ekstrim (mutlak) fungsi tersebut

Kemonotonan grafik fungsi : f'(x) > 0Kecekungan grafik fungsi : f''(x) > 0

KB.4 Antiturunan, Integral, dan Aplikasi Integral

1. Antiturunan

a. Konsep Antiturunan

Antiturunan adalah yang merupakan balikan dari turunan , disebut juga dengan **pengintegralan** tak tentu.

• Integral tak tentu antara lain:

$$\int x^r dx = \frac{x^{r+1}}{r+1} + c$$

Kelinieran

Dipunyai f dan g fungsi-fungsi yang mempunyai turunan dan K suatu konstanta. Untuk f dan g berlaku aturan berikut.

1.
$$\int Kf(x) dx = K \int f(x) dx,$$

2.
$$\int [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx$$
,

3.
$$\int [f(x) - g(x)] dx = \int f(x) dx - \int g(x) dx$$
.

b. Teorema pergantian dan inegral parsial

Teorema pergantian

Dipunyai g mempunyai turunan pada Dg dan $Rg \subset I$ dengan I adalah suatu selang. Jika f terdefinisi pada selang I sehingga F'(x) = f(x), maka $\int f[g(x)]g'(x) dx = F[g(x)] + C$.

Integral Parsial

Jika U dan V adalah fungsi-fungsi yang mempunyai turunan pada selang buka I, maka $\int U$. dV = U. $V - \int V$. dU.

c. Teknik Penginegralan

Teknik pengintegralan yang diperoleh dari turunan maupun integral

No	Teknik pengintegralan
1	$\int dx = x + C$
2	$\int K \ dx = K \cdot x + C, \text{ dengan } K \text{ suatu konstanta}$
3	$\int K \cdot f(x) \ dx = K \cdot \int f(x) \ dx, K \text{ suatu konstanta}$
4	$\int [f(x) + g(x)]dx = \int f(x) dx + \int g(x) dx$
5	$\int x^n \ dx = \frac{x^{n+1}}{n+1} + C$
6	$\int \frac{dx}{x} = \ln x + C = \ln C x $
7	$\int e^x \ dx = e^x + C$
8	$\int a^x \ dx = \frac{a^x}{\ln a} + C \text{ dengan } a > 0, \text{ dan } a \neq 1$
9	$\int \sin x \ dx = -\cos x + C$
10	$\int \cos x \ dx = \sin x + C$
11	$\int \sec^2 x \ dx = \tan x + C$
12	$\int \csc^2 x \ dx = -\cot x + C$
13	$\int \sec x \cdot \tan x \ dx = \sec x + C$
14	$\int \csc x \cdot \cot x \ dx = -\csc x + C$
15	$\int \tan x \ dx = -\ln \cos x + C = \ln \sec x + C$
16	$\int \cot x \ dx = \ln \sin x + C$
17	$\int \sec x \ dx = \ln \sec x + \tan x + C$

No	Teknik pengintegralan
18	$\int \csc x \ dx = \ln \csc x - \cot x + C$
19	$\int \frac{dx}{\sqrt{1-x^2}} = \sin^{-1} x + C = -\cos^{-1} x + C$
20	$\int \frac{dx}{1+x^2} = \tan^{-1} x + C = -\cot^{-1} x + C$
21	$\int \frac{dx}{ x \sqrt{x^2 - 1}} = \sec^{-1} x + C = -\csc^{-1} x + C$
22	$\int \frac{du}{\sqrt{a^2 - u^2}} = \sin^{-1}\left(\frac{u}{a}\right) + C = -\cos^{-1}\left(\frac{u}{a}\right) + C$
	$\int \frac{du}{a^2 + u^2} = \frac{1}{a} \tan^{-1} \left(\frac{u}{a} \right) + C = -\frac{1}{a} \cot^{-1} \left(\frac{u}{a} \right) + C$
24	$\int \frac{du}{u\sqrt{u^2 - a^2}} = \frac{1}{a}\sec^{-1}\left(\frac{u}{a}\right) + C = -\frac{1}{a}\csc^{-1}\left(\frac{u}{a}\right) + C$

Integral Fungsi Trigonometri

Integral bentuk dapat diselesaikan dengan mudah untuk beberapa kasus nilai m dan n yang tertentu.

Kasus m ganjil atau n ganjil dan Kasus m genap dan n genap

Integral Fungsi Rasional

Teknik pengintegralannya fungsi rasional tak sejati diubah menjadi fungsi rasional sejati dengan pembagian. Setelah menjadi fungsi rasional sejati, berikutnya jadikan sebagai penjumlahan dengan penyebut faktor-faktornya.

2. Deret dan Notasi Sigma dan Jumlah Rieman

- a) Deret dan Notasi Sigma
- b) Jumlah Riemann

Dipunyai [a, b] suatu selang tutup. Suatu partisi Pn untuk selang [a, b] adalah sebarang himpunan yang terdiri (n + 1) bilangan

$$\{x0, x1, x2, ..., xn\}$$
, dengan
 $a = x0 < x1 < x2 < ... < xn = b$.

3. Integral Tertentu

Dipunyai fungsi $f:[a, b] \to \mathbb{R}$. Jika $\lim |P| \to 0 \sum f(ti)$. $\Delta i \times ni=1$

ada, maka dikatakan fungsi f terintegralkan secara

Riemann pada selang [a, b]. Selanjutnya ditulis

 $\lim \|P\| \to 0 \sum f(ti). \ \Delta ix = \int f(x) dx$

Sifat Penjumlahan Selang

- 4. Aplikasi Integral
 - a) Luas daerah pada bidang datar
 - b) Volume benda putar
 - Metode putar
 - Metode cincin
 - Metode sel silinder (kulit tabung)
 - c) Panjang busur suatu grafik fungsi

		d) Luas Permukaan benda putar
2	Daftar materi yang sulit	1. Identitas Trigonometri
	dipahami di modul ini	2. Antiturunan
		3. Volume benda putar
3	Daftar materi yang	1. Identitas Trigonometri
	sering mengalami	2. Antiturunan
	miskonsepsi	3. Volume benda putar