
VocBench Sheet2RDF import guide

Version : 1.0
Date : 2025-10-01
Abstract : This document gives practical procedures and use-cases to import tabular CSV or
spreadsheet data into VocBench using the Sheet2RDF tool.
Authors : thomas.francart@sparna.fr, marie.muller@sparna.fr

mailto:thomas.francart@sparna.fr
mailto:marie.muller@sparna.fr

Introduction​ 2
Prerequisites​ 2

Data sheet structure prerequisites​ 2
Prepare the vocabulary project in VocBench​ 3
Alternatives to Sheet2RDF​ 3

Direct RDF loading​ 3
xls2rdf​ 4

Import data using VocBench Sheet2RDF tool​ 4
The Sheet2RDF screen and workflow​ 4
Prepare your data sheet​ 5

Use property URI identifiers as column names (e.g. “skos:prefLabel”)​ 5
Optionally indicate a language tag with @xx​ 5
Optionally use a class URI identifier as the name for a single column (e.g.
“skos:Concept”)​ 5

Load your file in Sheet2RDF​ 6
The Mapping wizard​ 6

Automated : mapping based on header names​ 6
Wizard : using wizard screens to create mappings for each column​ 7

Start the subject mapping using the Subject Header editor​ 7
Select the subject column and the type​ 8
Case 1 : the table does not contain any usable identifier​ 9
Case 2 : the table contains an existing unique identifier (numerical or
alphabetical)​ 10
Case 3 : the table already contains a complete URI identifier​ 11
The additional predicate-object​ 12

Define each column mapping​ 13
If the column naming rules have been followed !​ 13
Logic: node and graph application​ 14
Create the node​ 14

Case 1: map a string column (or with a datatype)​ 15
Case 2: map a column with a language​ 16
Case 3: map a column containing a complete URI​ 16
Case 4: map a reference to another entry with an ID​ 16
Case 5 : explicitly ignoring a column in the mapping​ 17

Specify the graph application​ 17
Status of column mapping : green / orange / red headers​ 18

Wizard : advanced use-cases​ 18
How to refer to automatically assigned URI from another column​ 18

“Memoize” in the Subject column​ 19
“Memoize” in the column mappings​ 20

How to lookup URI of existing entries in VocBench from their label​ 20
Define the first node containing the exact value to lookup​ 21
Define the second node containing the lookup result​ 22
Create the graph application​ 23

Wizard conclusion : Generate the PEARL mapping​ 24
Execute the PEARL mapping​ 25
Download or import the resulting triples​ 25
Load / save the mapping wizard or the PEARL mapping​ 26

Load / save the mapping wizard​ 26
Load / save the PEARL mapping​ 26

Advanced : manual PEARL mapping edition (conditional rules)​ 27

Introduction
This document gives step-by-step procedures on how to use VocBench Sheet2RDF tool to
import data in Vocbench projects.

This document aims at being practical and use-case oriented, leaving aside the theoretical
details.

For more information, please refer to the official Sheet2RDF website as well as to the
dedicated page of the Sheet2RDF integration in VocBench. You can also check out the
Sheet2RDF tutorial page.

Prerequisites
●​ You need to be logged in a VocBench project with an account who is either a project

manager or an administrator of the project, since they are the only profiles allowed to
work with Sheet2RDF.

●​ A spreadsheet with your data organized in columns, one property field per column.
(a good practice is to edit the column headers with the correct property names before
loading the spreadsheet, see further details below in the chapter Automated :
mapping based on header names)

●​ In case we want to import SKOS Concepts, as for example a simple controlled list
(doc types, statuses, etc.), you will need to create a project with a ConceptScheme
with the ConceptScheme ID of the vocabulary and its human readable name.

Data sheet structure prerequisites
1.​ The spreadsheet tabs content has to be clean, and the first line must contain the title

of the column. No other lines should be present before the header.
2.​ Also make sure there are no blank lines in the middle of the file.
3.​ Each cell in the file must contain only one value. If your file contains multiple values,

you need to separate them into several columns with the same header : for example
it is perfectly valid to have multiple columns with the same header “skos:altLabel”,
each containing a single synonym value.

4.​ The spreadsheet can contain multiple tabs
5.​ Save your file in xlsx, odt, or csv format.

Prepare the vocabulary project in VocBench
The data you will import with Sheet2RDF has to be stored in a vocabulary project in
VocBench.

https://art.uniroma2.it/sheet2rdf/
https://art.uniroma2.it/sheet2rdf/
https://art.uniroma2.it/sheet2rdf/documentation/vb_tool/
https://art.uniroma2.it/sheet2rdf/documentation/tutorial.jsf

If you don’t have the project yet, start by creating it. To do so, you can follow the
corresponding VocBench documentation.

The project can be either a SKOS project or an OWL project. If the import you want to make
is an import of SKOS Concepts to populate a new ConceptScheme, make sure to manually
create the ConceptScheme before, by checking the corresponding section in VocBench
documentation.

Alternatives to Sheet2RDF

Direct RDF loading
As a reminder, Sheet2RDF is not the only way to load data in VocBench. It is directly
possible to load existing SKOS or RDF files inside a project.

To load already existing SKOS or RDF files, go to the upper drop-down menu and choose
the « Load data » feature.

A dedicated window opens where you can configure the source of your data, select a file,
and specify the base URI and the import procedure. For more information, refer to the official
VocBench “load data” documentation.

xls2rdf
From an Excel file, you can also use Sparna’s Excel-to-RDF converter tool : to generate an
RDF file from an Excel spreadsheet structured in a specific way.

The tool can produce any RDF, not only SKOS (lists of foaf:Person, of schema:Event,
SHACL, OWL, etc.).

The main difference between xls2rdf and Sheet2RDF is that xls2rdf relies entirely on the
headers configuration, no external mapping file is necessary.

https://vocbench.uniroma2.it/doc/user/projects.jsf#project_creation
https://vocbench.uniroma2.it/doc/user/projects.jsf#project_creation
https://vocbench.uniroma2.it/doc/user/skos_editing.jsf#the_scheme_section
https://vocbench.uniroma2.it/doc/user/skos_editing.jsf#the_scheme_section
https://vocbench.uniroma2.it/doc/user/global_data_management.jsf#load_data
https://vocbench.uniroma2.it/doc/user/global_data_management.jsf#load_data
https://xls2rdf.sparna.fr/rest/doc.html

Import data using VocBench Sheet2RDF tool

The Sheet2RDF screen and workflow
To access Sheet2RDF, go to the menu “Tools”, and click on “Sheet2RDF”.

The import workflow involves the following steps in the screen:

1.​ Load the spreadsheet
2.​ Define the Subject mapping with the “Subject mapping” button
3.​ Define each column mapping with the edit icon next to each column header
4.​ Generate the PEARL technical mapping definition

a.​ Here, the PEARL mapping definition can be manually edited if needed
5.​ Trigger the actual conversion of the spreadsheet file from the PEARL definition
6.​ Either download the resulting RDF data, or store it in the current VocBench project

Prepare your data sheet
If you can modify your spreadsheet file, edit the column headers in the first line to match the
data model as configured in VocBench for your project. This will make the mapping step
much easier as Sheet2RDF will be able to guess the mapping from the column headers.

Follow the rules below to edit your headers, and refer to the Sheet2RDF complete heuristics
documentation for more information.

Use property URI identifiers as column names (e.g. “skos:prefLabel”)

Names for headers can be a valid property name (e.g. "skos:prefLabel")

For this name to be meaningfully used, its prefix should be mappable to a given namespace,
by means of one of the following:

1.​ the prefix is known a priori by VocBench, in the project where the import is done (i.e.
skosxl, skos, owl, rdfs, rdf,...)

2.​ prefix/namespace is defined in the prefix_mapping sheet. You can add a sheet
called “prefix_mapping” to your spreadsheet, with 2 columns : the prefix name in the
first column (e.g. “rico”), and the prefix URI in the second column (e.g.
“https://www.ica.org/standards/RiC/ontology#”). This should start at the first line of
the sheet.

Optionally indicate a language tag with @xx

A language tag can be added at the end of the header with “@xx.”, for example
“skos:prefLabel@en”.

Optionally use a class URI identifier as the name for a single column
(e.g. “skos:Concept”)

A class URI can also be used to mark the column corresponding to the subject (e.g.
“foaf:Person”). This should be done on a single column only, in the case a column contains
some identifiers that can be used to create the subject URI of the triples (see below the
“Subject mapping” section).

An example of how an input Excel file can look like to be automatically mapped is the
following:

https://art.uniroma2.it/sheet2rdf/documentation/heuristics.jsf
https://art.uniroma2.it/sheet2rdf/documentation/heuristics.jsf
https://www.ica.org/standards/RiC/ontology#

Load your file in Sheet2RDF

Once in the Sheet2RDF screen, load your Spreadsheet file by clicking on Sheet2RDF
browse button :

Your spreadsheet appears on screen and the mapping can be completed via Sheet2RDF’s
mapping wizard :

The Mapping wizard

Automated : mapping based on header names

Have a look at the headers of your columns :

If you named the column headers according to the rules described earlier, the system will
automatically recognize its properties and instantly validate the mapping when loading your
spreadsheet. The columns that have been matched automatically will appear with a green
header.

If you also used a class URI to indicate the subject column, the subject mapping will also
appear in green. Otherwise you need to proceed to the subject mapping (see below) in order
to assign a subject (a URI, from your URI column) to each line of your spreadsheet.

Wizard : using wizard screens to create mappings for each column

Let’s start the manual mapping of your file via the mapping wizard. The mapping will be
achieved in two main steps :

1.​ The subject mapping, to identify the items of the spreadsheet as the subjects of the
triples to be added to the graph, using the available URIs or creating some on
purpose

2.​ The columns mapping, to convert each column into a triple with a predicate (ex :
skos:prefLabel, skos:exactMatch, etc.), combining a « node » that represents the
content of the spreadsheet cell with its projection in the graph (or « graph application
»).

Start the subject mapping using the Subject Header editor
Any triple that will be added to the graph must have a subject, this is the URI that identifies
every item listed in the spreadsheet. In this concern, Sheet2RDF needs to know how to
generate or assign the subject (the URI) for each line. This is described in the subject
mapping section of the Sheet2RDF documentation.

This can be done using the Subject Header editor (the « subject mapping » button that
appears in red) just above the spreadsheet preview :

https://art.uniroma2.it/sheet2rdf/documentation/vb_tool/#mapping_the_subject
https://art.uniroma2.it/sheet2rdf/documentation/vb_tool/#mapping_the_subject
https://art.uniroma2.it/sheet2rdf/documentation/vb_tool/#mapping_the_subject
https://art.uniroma2.it/sheet2rdf/documentation/vb_tool/#mapping_the_subject

Click on the « subject mapping » button to start the subject mapping. The Subject Header
Editor appears where you can configure the subject mapping :

Select the subject column and the type

●​ Select the column from your file from which the subject mapping will be determined.
Depending on the cases, this can be a column containing a string identifier, a
complete URI identifier, or a label (see below)

●​ You can also assign a type (rdf:type) to every subject that will be created in the
import. For this, check the “Assert type” box and select the class that will be assigned
as a type to every subject. Typically, in SKOS projects, you would select
“skos:Concept” to populate a controlled vocabulary :

Go to the Converter section below to select the converter you need. The converter is
responsible for generating the URI of the subject from the column content.

Case 1 : the table does not contain any usable identifier

In case the table does not contain any usable identifier, select “RandomIdGenerator”.
For example:

“RandomIdGenerator” generates a random URI and assigns it to the subject node.

Below the converter selection you can select the “Signature” of the converter, with 3 possible
choices:

1.​ With the first choice “uri(coda:randIdGen())”, the generator will produce URIs
with a serial of eight random numbers, preceded by the “undetermined” prefix, such
as <https://data.sparna.fr/vocabulaires/test#undetermined_9ab40489>

2.​ With the second choice “uri(coda:randIdGen(String xRole))”, the generator will
produce URI with a specified “role”. We recommend to use this signature. The role
needs to be selected as an argument:

The “roles” are the ones known by VocBench, and cannot be changed. Typically you
would choose “concept” when importing Concepts in a SKOS project, or “individual”
when importing individuals in an OWL project. The generated URI will look like
<https://data.sparna.fr/vocabulaires/test#c_9ab40489> (“c” corresponds to the prefix
for the “concept” role).

3.​ More advanced options can be provided with the third choice
“uri(coda:randIdGen(String xRole, Map args))”, but this is for advanced
usage

The generated URI will always use, by default, the base URI of the project as the beginning
of the URI. You can adjust this by modifying the “Default namespace” parameter of the
generator:

Don’t forget the final “#” or “/” in this case.

Case 2 : the table contains an existing unique identifier (numerical or alphabetical)

In case when the table contains an existing unique identifier (numerical or alphabetical),
select “DefaultConverter”.

For example:

https://data.sparna.fr/vocabulaires/test#c_9ab40489

“DefaultConverter” will concatenate the content of the column to the base URI of the
project (you can modify this base URI by adjusting the “Default namespace” option at the
bottom).

Case 3 : the table already contains a complete URI identifier

In case when the table already contains a complete URI identifier, select
“DefaultConverter”.

For example:

In this case the converter will simply use the provided URI in the column as the subject URI.

The additional predicate-object

Finally, a section at the bottom allows the definition of additional predicate-object pairs to
relate to the subject resource.

As an example, for a SKOS project, if we want to add the Additional predicate-object » «
skos:inScheme » to link the items of the file to the ConceptScheme of the vocabulary, we
need to specify the relation there. In this case, select “skos:inScheme” property in the
Predicate field :

Then pick up the ConceptScheme URI of your vocabulary to relate to the subject resources.

Once the Subject mapping is done, the Subject mapping button turns green and a green dot
with an [s] appears in the header of the column containing the identifiers. This means that
this column contains the subjects of the triples that will be generated:

Define each column mapping
Now, you need to specify how each column will be mapped.

If the column naming rules have been followed !

If the column naming rules described earlier have been followed, the mapping will be
automatic and you will see the columns in green.

For example, consider the following table:

This table has been mapped fully automatically by Sheet2RDF.

Note how:

1.​ It uses skos:Concept as the header indicating the subject column on a column
giving the identifier of each entry

2.​ It uses property URI skos:prefLabel, skos:definition, skos:broader for the
other columns headers

3.​ It uses “@en” to indicate the language for the preferred label and the definition

In such a case, you can directly generate the PEARL mapping by clicking the blue arrow on
the top right corner of the subject mapping panel:

Otherwise follow the steps below to configure the mapping columns by columns.

To map a column, click on the pencil icon in the column header:

The Header Mapping Editor window will open:

●​ “Header” contains the name of the column you are working on
●​ “PEARL feature” contains the name of the associated variable that will be used in the

Pearl script.

These are automatically assigned, there is no need to modify these 2 fields.

Logic: node and graph application

The header mapping configuration is done in two steps:

1.​ in the “Nodes” section, you will specify a procedure to convert the column data into
an RDF value

2.​ in the “Graph Applications” section, you will indicate how the final triple(s) will be
constructed, typically by simply selecting a predicate to refer to the node constructed
in the first step.

Create the node

Click on the “+” in the “Nodes” panel to create a new node. This will display the node editor
form:

1.​ Enter an ID for the node, this can be any variable name, e.g. “pref_abel”
2.​ Select its target type : either a literal value (string, date, boolean, integer, etc.), or a

resource (URI)
3.​ Optionally, select some sanitization options, if needed.

Then you need to select the converter to generate the value. The converter to select
depends on the use-cases described below.

Case 1: map a string column (or with a datatype)

The simplest case is when we have the column contains a basic string value, for example
the « label » column in the table below:

In this case select “DefaultConverter”.

The string column will be mapped as is, using the content of the column.

Optionally, you can associate a datatype to the generated value:

This is useful when your column contains values of a specific pattern, such as booleans
“true” / “false”, or dates with the structure “yyyy-mm-dd”.

Case 2: map a column with a language

In the case where the column contains a string to be associated with a language tag, such
as a label, a synonym, or a definition, use “LangStringConverter”.

This converter will generate a literal with a language tag to be specified. Select the signature
“literal(coda:langString(String langArg))” in the signature panel, and enter the
target language code on the right:

Case 3: map a column containing a complete URI

In the case where the column contains a full URI, like see column C in the example table
below:

Also use “DefaultConverter”. The default converter will automatically determine that the
value is a URI, and will use it “as-is”, using the content of the column.

Case 4: map a reference to another entry with an ID

There are cases where a column from the table makes a reference to the identifier of
another entry, for example to refer to a parent or related entry. This is the case with the
“parent” column below:

In this case, use “DefaultConverter”, which will concatenate the base URI of the project
with the content of the column.

Case 5 : explicitly ignoring a column in the mapping

It may happen that columns in the file need to be ignored and will not be converted. In this
case, edit this column mapping and tick the “ignore header” checkbox on the top right corner
of the “Header editor” dialog:

This will make it clear that the column has been reviewed and explicitly excluded from the
mapping.

Specify the graph application

Once you have mapped the node, using one the use-cases above, you need to specify how
this value will be used in the resulting triple. This is done in the “Graph application” section
which allows you to declare an RDF triple model.

In the Graph application section, click + and choose “Simple Graph Application”.

Select the target predicate to use in the “Property” field, by clicking on the blue folder. This
property must be defined in the ontology underlying your project in VocBench (so the
ontology needs to have been imported first).

The Range field is automatically populated and cannot be edited.

Choose a Range type to specify the type of the triple object. It can only take two values:
Literal (for text) or Resource (for a URI). In our example for the definitions, we choose Literal
and choose DataType rdf:langString (since we set a language for the Node).

In the “Node” field select the Node you created in the previous section. Most of the time, and
for simple mappings, there is only one Node here to select from. This will be the object of the
generated triple.

Click OK and then OK again to close the Header editor window.

Status of column mapping : green / orange / red headers

While you work on your column mapping, a legend is available just bottom right of the
mapping window : the color of each column header allows you to check the current status of
each column mapping.

●​ Black : Header not yet configured
●​ Green : Header with at least a valid configuration
●​ Orange : Header partially configured (e.g. only node defined, but not graph

application)
●​ Gray : Header was ignored
●​ Red : Incompleted Subject header
●​ Green S icon : Header used for the subject mapping

/!\ Only the green headers will be converted in the end

Wizard : advanced use-cases

How to refer to automatically assigned URI from another column

Consider the example below:

The table does not contain any usable ID. URIs will be assigned automatically to each
Concept. In the “parent 1”, “parent 2” and “parent 3” columns, we need to refer to the URI
that has been automatically assigned to the corresponding Concept.

“Memoize” in the Subject column

When defining the Subject mapping, use the “RandomIdGenerator”.

Use its second signature, with a “role”, and select role “concept” (because we
are importing concepts)

Then check the “Memoize” option. Because we know we will need to refer to those same
URIs later (in the parent column), this will create a “cache” of all generated URIs associated
to the content of the column (= the label), so that we can refer to this cache later.

You can manage multiple caches with the cache name. In simple cases, leave the “Default”
cache, but optionally you can give a name to the cache by clicking the “+” (if we have
multiple URI assignment to do in multiple columns, but this is not our case here)

“Memoize” in the column mappings

When mapping each of the “parent 1”, “parent 2” and “parent 3” columns, use the same
procedure:

●​ Use the “RandomIdGenerator”.
●​ Use its second signature, with a “role”, and select role “concept” (because we are

importing concepts)
●​ Check the “Memoize” option
●​ Select the same cache name as the one you picked up during Subject mapping

(“Default” by default)

This tells Sheet2RDF : “Whenever you find a label to which you already assigned a URI
before (in the cache) then reuse that same URI”

/!\ Warning : if the column contains a label that was not part of the Subject mapping, then a
new URI will be created. The consistency of the table needs to be ensured before importing !

How to lookup URI of existing entries in VocBench from their label
Consider the following example:

In this table, the “related to” column contains a reference to some ID of an existing Concept
already imported in VocBench. This is not the URI, but could be e.g. the value of a

skos:notation or dct:identifier property associated with the Concept. We would like
this column to be mapped to a skos:relatedMatch triple.

We will need to do a “lookup” in VocBench to find the URI of the corresponding Concept with
a “PropPathIDResolver”.

To proceed we need to create 2 Nodes (= 2 values) instead of just one:

●​ first, one node that will be the formal value used to search in VocBench with proper
language or datatype

●​ second node that will be the result of searching in VocBench the URI that has the first
node as the value of a given property

/!\ Order matters here ! the nodes need to be created in this order.

Define the first node containing the exact value to lookup

First create a first node that maps the column value to the exact value to be searched in
VocBench. By “exact value” we mean the literal with the adequate datatype or language tag.
To do this, follow the steps explained above and use either a “DefaultConverter” or a
“LangStringConverter”.

In our example we create a node called “related_to_value”, of type Literal, with a
DefaultConverter, and an xsd:string datatype because we know that the value to lookup
have this structure:

After the node creation don’t proceed to the “Graph application” yet ! as this first node is only
used to do the lookup, but will not be mapped directly to the graph.

Define the second node containing the lookup result

Now declare another node. When declaring the mapping for this node, we will do a lookup of
the first node.

To do this you can either use:

●​ The “PropPathIDResolverConverter” that searches the value in a property to be
specified (e.g. skos:notation)

●​ The “LexiconIDResolverConverter” that searches for labels (prefLabel, altLabel or
other kinds of labels, depending on the lexicalisation parameter of the project).

We will use the “PropPathIDResolverConverter”. Our second node is called
“related_to_lookup”, and it is of type “Resource” because it will contain the URI of the
Resource having the specified ID.

In the Signature panel we use the signature with 3 parameters:

1.​ The value that we search : this is a reference to the first node we created in the
previous step, preceded by a “$” sign, in our case $related_to_value

2.​ The full URI of the property that we search. This can be a prefixed URI if the prefix is
known, in our case skos:notation

3.​ A fallback value if not found : “<http://error.org>” - so that we can check after
conversion that this fallback value is never present. Use angle brackets around this
URI.

The parameters look like this:

Create the graph application

When defining the Simple Graph Application, select the desired predicate as usual
(skos:relatedMatch in our case) and make sure you select the second node
(related_to_lookup in our case) :

http://error.org

Wizard conclusion : Generate the PEARL mapping

When the mapping of every column is done, click the blue “Play” arrow in the top right of the
mapping panel to generate the mapping in the PEARL code panel.

The Pearl section shows the Pearl code generated from the configurations you have made.
You do not need to know the Pearl programming language to use the tool.

Optional: it is possible to modify PEARL manually (to create conditional rules) - see the
advanced section for cases where you may want to modify the mapping manually.

For more information, see the Pearl documentation.

https://art.uniroma2.it/coda/documentation/pearl.jsf

Execute the PEARL mapping
Once the PEARL mapping is generated, you can apply it to convert the spreadsheet. Click
the Green Play button in the Pearl window to generate the triplets. You can explore the
triples in the Generated Triples Preview window at the bottom.

Download or import the resulting triples
The last section, Generated triples preview, allows you to check the result of the
transformation into RDF.

Here you can export the generated triples under various formats :

If you prefer to use VocBench to work on your resource, click on the “Add triples” button to
populate your RDF database. The triples then get inserted inside the VocBench project.

Load / save the mapping wizard or the PEARL mapping
Both the mapping configuration and the PEARL mapping can be saved and reloaded.

Load / save the mapping wizard

The configuration template can be exported using the download buttons and used to
reproduce this process identically and effortlessly on another similar dataset.

Load / save the PEARL mapping

The generated Pearl script can be exported using the download buttons and used to
reproduce this process identically and effortlessly on another similar dataset

Advanced : manual PEARL mapping edition (conditional rules)
Some mapping rules need to be manually done by directly editing the PEARL mapping and
cannot be defined in the mapping wizard. This is the case for conditional rules, when we
need to generate triples only in the case the value in the column is equal, or different from, a
certain value.
Take for example the case of the skos:topConceptOf predicate to relate the root concepts of
a taxonomy to their ConceptScheme: this predicate has to be created only for root concepts,
not for others.
The PEARL language documentation contains a dedicated section on conditional rules.

Conditions are expressed in an additional conditions { … } section in the rule. The
example below illustrates how the skos:topConceptOf predicate is generated only if the third
column (being the column indicating the parent of the concept) contains the value
“UNKNOWN”.

https://art.uniroma2.it/coda/documentation/pearl.jsf#conditions_for_rule_triggering

The rule will be triggered only when the condition is set. Note that it is not possible to test for
an empty value in the table (as empty cells do not generate a corresponding value in the
mapping process).

	VocBench Sheet2RDF import guide
	Introduction
	Prerequisites
	Data sheet structure prerequisites

	Prepare the vocabulary project in VocBench
	Alternatives to Sheet2RDF
	Direct RDF loading
	xls2rdf

	Import data using VocBench Sheet2RDF tool
	The Sheet2RDF screen and workflow
	Prepare your data sheet
	Use property URI identifiers as column names (e.g. “skos:prefLabel”)
	Optionally indicate a language tag with @xx
	Optionally use a class URI identifier as the name for a single column (e.g. “skos:Concept”)

	Load your file in Sheet2RDF
	The Mapping wizard
	Automated : mapping based on header names
	Wizard : using wizard screens to create mappings for each column
	Start the subject mapping using the Subject Header editor
	
	
	
	Select the subject column and the type
	Case 1 : the table does not contain any usable identifier
	Case 2 : the table contains an existing unique identifier (numerical or alphabetical)
	Case 3 : the table already contains a complete URI identifier
	The additional predicate-object

	Define each column mapping
	If the column naming rules have been followed !
	Logic: node and graph application
	Create the node
	Case 1: map a string column (or with a datatype)
	Case 2: map a column with a language
	Case 3: map a column containing a complete URI
	Case 4: map a reference to another entry with an ID
	Case 5 : explicitly ignoring a column in the mapping

	Specify the graph application
	Status of column mapping : green / orange / red headers

	Wizard : advanced use-cases
	How to refer to automatically assigned URI from another column
	“Memoize” in the Subject column
	“Memoize” in the column mappings

	How to lookup URI of existing entries in VocBench from their label
	Define the first node containing the exact value to lookup
	Define the second node containing the lookup result
	Create the graph application

	Wizard conclusion : Generate the PEARL mapping

	Execute the PEARL mapping
	Download or import the resulting triples
	Load / save the mapping wizard or the PEARL mapping
	Load / save the mapping wizard
	Load / save the PEARL mapping

	Advanced : manual PEARL mapping edition (conditional rules)

