VocBench Sheet2RDF import guide

Version : 1.0

Date : 2025-10-01

Abstract : This document gives practical procedures and use-cases to import tabular CSV or
spreadsheet data into VocBench using the Sheet2RDF tool.

Authors : thomas.francart@sparna.fr, marie.muller@sparna.fr

mailto:thomas.francart@sparna.fr
mailto:marie.muller@sparna.fr

Introduction
Prerequisites
Data sheet structure prerequisites
Prepare the vocabulary project in VocBench
Alternatives to Sheet2RDF
Direct RDF loading
xls2rdf
Import data using VocBench Sheet2RDF tool
The Sheet2RDF screen and workflow
Prepare your data sheet
Use property URI identifiers as column names (e.g. “skos:prefLabel”)
Optionally indicate a language tag with @xx

Optionally use a class URI identifier as the name for a single column (e.g.
“skos:Concept”)

Load your file in Sheet2RDF
The Mapping wizard
Automated : mapping based on header names
Wizard : using wizard screens to create mappings for each column
Start the subject mapping using the Subject Header editor
Select the subject column and the type
Case 1 : the table does not contain any usable identifier

Case 2 : the table contains an existing unique identifier (numerical or
alphabetical)

Case 3 : the table already contains a complete URI identifier
The additional predicate-object
Define each column mapping
If the column naming rules have been followed !
Logic: node and graph application
Create the node
Case 1: map a string column (or with a datatype)
Case 2: map a column with a language
Case 3: map a column containing a complete URI
Case 4: map a reference to another entry with an ID
Case 5 : explicitly ignoring a column in the mapping
Specify the graph application
Status of column mapping : green / orange / red headers
Wizard : advanced use-cases
How to refer to automatically assigned URI from another column
“Memoize” in the Subject column
“Memoize” in the column mappings
How to lookup URI of existing entries in VocBench from their label
Define the first node containing the exact value to lookup
Define the second node containing the lookup result
Create the graph application

O o0 a b~ AP, OWONMNDNND

© 00N NO O O O,

11
12
13
13
14
14
15
16
16
16
17
17
18
18
18
19
20
20
21
22
23

Wizard conclusion : Generate the PEARL mapping
Execute the PEARL mapping
Download or import the resulting triples
Load / save the mapping wizard or the PEARL mapping
Load / save the mapping wizard
Load / save the PEARL mapping
Advanced : manual PEARL mapping edition (conditional rules)

24
25
25
26
26
26
27

Introduction

This document gives step-by-step procedures on how to use VocBench Sheet2RDF tool to
import data in Vocbench projects.

This document aims at being practical and use-case oriented, leaving aside the theoretical
details.

For more information, please refer to the official Sheet2RDF website as well as to the

dedicated page of the Sheet?RDF integration in VocBench. You can also check out the
Sheet2RDF tutorial page.

Prerequisites

e You need to be logged in a VocBench project with an account who is either a project
manager or an administrator of the project, since they are the only profiles allowed to
work with Sheet2RDF.

e A spreadsheet with your data organized in columns, one property field per column.

(a good practice is to edit the column headers with the correct property names before
loading the spreadsheet, see further details below in the chapter Automated :
mapping based on header names)

e |n case we want to import SKOS Concepts, as for example a simple controlled list
(doc types, statuses, etc.), you will need to create a project with a ConceptScheme
with the ConceptScheme ID of the vocabulary and its human readable name.

Data sheet structure prerequisites

1. The spreadsheet tabs content has to be clean, and the first line must contain the title
of the column. No other lines should be present before the header.

2. Also make sure there are no blank lines in the middle of the file.

3. Each cell in the file must contain only one value. If your file contains multiple values,
you need to separate them into several columns with the same header : for example
it is perfectly valid to have multiple columns with the same header “skos:altLabel”,
each containing a single synonym value.

4. The spreadsheet can contain multiple tabs

5. Save your file in xlIsx, odt, or csv format.

Prepare the vocabulary project in VocBench

The data you will import with Sheet2RDF has to be stored in a vocabulary project in
VocBench.

https://art.uniroma2.it/sheet2rdf/
https://art.uniroma2.it/sheet2rdf/
https://art.uniroma2.it/sheet2rdf/documentation/vb_tool/
https://art.uniroma2.it/sheet2rdf/documentation/tutorial.jsf

If you don’t have the project yet, start by creating it. To do so, you can follow the
corresponding VocBench documentation.

The project can be either a SKOS project or an OWL project. If the import you want to make
is an import of SKOS Concepts to populate a new ConceptScheme, make sure to manually
create the ConceptScheme before, by checking the corresponding section in VocBench
documentation.

Alternatives to Sheet2RDF

Direct RDF loading

As a reminder, Sheet2RDF is not the only way to load data in VocBench. It is directly
possible to load existing SKOS or RDF files inside a project.

To load already existing SKOS or RDF files, go to the upper drop-down menu and choose
the « Load data » feature.

Current project: Vocabulaires_Spama B Global Data Management « b About VocBench =

en W
VocBench Projects Data L Loaddatz Mistory Validation Tools v g‘
& Export data

& Cleardata

Welco (@ Versioning nch

Change working graph

VocBench is ollaborative development platform for managing OWL ontologies, SKOS(/XL) thesauri, Ontolex-lemon

lexicons and 13 Refactoring

VocBench is arkey Knowledge Acquisition and Management framework
L. Load SHACL shapes

& Export SHACL shapes
& Clear SHACL shapes

B Batch validation

A dedicated window opens where you can configure the source of your data, select a file,
and specify the base URI and the import procedure. For more information, refer to the official
VocBench “load data” documentation.

xls2rdf

From an Excel file, you can also use Sparna’s Excel-to-RDF converter tool : to generate an
RDF file from an Excel spreadsheet structured in a specific way.

The tool can produce any RDF, not only SKOS (lists of foaf:Person, of schema:Event,
SHACL, OWL, etc.).

The main difference between xIs2rdf and Sheet2RDF is that xIs2rdf relies entirely on the
headers configuration, no external mapping file is necessary.

https://vocbench.uniroma2.it/doc/user/projects.jsf#project_creation
https://vocbench.uniroma2.it/doc/user/projects.jsf#project_creation
https://vocbench.uniroma2.it/doc/user/skos_editing.jsf#the_scheme_section
https://vocbench.uniroma2.it/doc/user/skos_editing.jsf#the_scheme_section
https://vocbench.uniroma2.it/doc/user/global_data_management.jsf#load_data
https://vocbench.uniroma2.it/doc/user/global_data_management.jsf#load_data
https://xls2rdf.sparna.fr/rest/doc.html

Import data using VocBench Sheet2RDF tool

The Sheet2RDF screen and workflow
To access Sheet2RDF, go to the menu “Tools”, and click on “Sheet2RDF”.

Current project: Vocabulaires_Spama B Global Data Management = & About VocBench = an W

VocBench Projects Data Metadata *+ SPARGL History Validation

Alignment Validation

Welcome to VocBench Collaboration System
VocBench is a web-based, multilingual, collaborative developmeni Custom Forms and Views 5, SKOS(/XL) thesauri, Ontolex-lemon
lexicons and generic RDF datasets. Custom Services and Reports

VocBench is powered by the Semantic Turkey Knowledge Acquisil Integrity Gonstraint Validation (IGV)

ResourceMetadata

Sheet2RDF

SKOS diffing

The import workflow involves the following steps in the screen:

LR S S

2
2
2

2>
2
5.
5

s:/data.example.org/authoritymytypes3> <o w3.0r2004/02 skos coresprefLabel

Load the spreadsheet
Define the Subject mapping with the “Subject mapping” button
Define each column mapping with the edit icon next to each column header
Generate the PEARL technical mapping definition

a. Here, the PEARL mapping definition can be manually edited if needed
Trigger the actual conversion of the spreadsheet file from the PEARL definition
6. Either download the resulting RDF data, or store it in the current VocBench project

Pon=

o

Prepare your data sheet

If you can modify your spreadsheet file, edit the column headers in the first line to match the
data model as configured in VocBench for your project. This will make the mapping step
much easier as Sheet2RDF will be able to guess the mapping from the column headers.

Follow the rules below to edit your headers, and refer to the Sheet2RDF complete heuristics
documentation for more information.

Use property URI identifiers as column names (e.g. “skos:prefLabel”)

Names for headers can be a valid property name (e.g. "skos:prefLabel")

For this name to be meaningfully used, its prefix should be mappable to a given namespace,
by means of one of the following:

1. the prefix is known a priori by VocBench, in the project where the import is done (i.e.
skosxl, skos, owl, rdfs, rdf,...)

2. prefixi/namespace is defined in the prefix_mapping sheet. You can add a sheet
called “prefix_mapping” to your spreadsheet, with 2 columns : the prefix name in the
first column (e.g. “rico”), and the prefix URI in the second column (e.g.

“nttps://www.ica.org/standards/RiC/ontology#”). This should start at the first line of

the sheet.
Optionally indicate a language tag with @xx

A language tag can be added at the end of the header with “@xx.”, for example
“skos:preflLabel@en”.

Optionally use a class URI identifier as the name for a single column
(e.g. “skos:Concept”)

A class URI can also be used to mark the column corresponding to the subject (e.g.
“foaf:Person”). This should be done on a single column only, in the case a column contains
some identifiers that can be used to create the subject URI of the triples (see below the
“Subject mapping” section).

An example of how an input Excel file can look like to be automatically mapped is the
following:

B
1 skos:Concept skos:preflabel @en skos:definition@en skos:broader
2 1 agent An agent...
g 2 person Aperson... 1
4 3 organization An organization... 1
5 4 document Adocument...
& 5 report Areport... 4
7 & webpage Awebpage... 4

https://art.uniroma2.it/sheet2rdf/documentation/heuristics.jsf
https://art.uniroma2.it/sheet2rdf/documentation/heuristics.jsf
https://www.ica.org/standards/RiC/ontology#

Load your file in Sheet2RDF

Once in the Sheet2RDF screen, load your Spreadsheet file by clicking on Sheet2RDF
browse button :

Current project: Vozsbuiaires_Spama B | | Giobs) Dats Mansgement ~ | D

VocBench Projects Metadata v SPARQL History Validation Tools *

Source: Spreadshestiie W Browse | =xample-spreadshestilsx

Your spreadsheet appears on screen and the mapping can be completed via Sheet2RDF’s
mapping wizard :

Current project: “ocabulaires_Spama B Global Data Management = b

Data Metadata « SPARGL

VocBench

Projects History Validation Tools =

Source: Spreadsheet file W Browse | example-spreadsheetxls:
Spreadsheet preview AR, Subject mapping [NI A 3 FPearl
URrRl # skos:prefLabel@en [| skos:marrower [# | skos:exactMatch &
concept:00001 Concept A concept:000046 concept00007
concept:00002 Concept B concept:00007 concept00003
concept:00003 Concept C concept:00008 concept00008
concept:00004 Concept D concept:00008 conceptO0010
concept:00005 Concept E concept:00010 concept:00011

The Mapping wizard

Automated : mapping based on header names

Have a look at the headers of your columns :

Current project: Vocabulaires_Spama B Global Data Management -)

Projects Data Metadata = SPARGL History Validation Tools =

VocBench

Source: Spreadsheet file W Browse | example-spreadsheetxls:

Spreadsheet preview AR, | | Subject mapping | | | £ | X Pearl
URI @ skos:prefLabel@en @ | skos:narrower [| skos:exactMatch @
concept:00001 Concept A concept:000046 concept00007
concept:00002 Concept B concept:00007 concept00003
concept:00003 Concept C concept:00008 concept00008
concept:00004 Concept D concept:00008 conceptO0010
concept:00005 Concept E concept:00010 concept:00011

If you named the column headers according to the rules described earlier, the system will
automatically recognize its properties and instantly validate the mapping when loading your
spreadsheet. The columns that have been matched automatically will appear with a green
header.

If you also used a class URI to indicate the subject column, the subject mapping will also

appear in green. Otherwise you need to proceed to the subject mapping (see below) in order
to assign a subject (a URI, from your URI column) to each line of your spreadsheet.

Wizard : using wizard screens to create mappings for each column

Let’s start the manual mapping of your file via the mapping wizard. The mapping will be
achieved in two main steps :

1. The subject mapping, to identify the items of the spreadsheet as the subjects of the
triples to be added to the graph, using the available URIs or creating some on
purpose

2. The columns mapping, to convert each column into a triple with a predicate (ex :
skos:prefLabel, skos:exactMatch, etc.), combining a « node » that represents the
content of the spreadsheet cell with its projection in the graph (or « graph application

»).

Start the subject mapping using the Subject Header editor

Any triple that will be added to the graph must have a subject, this is the URI that identifies
every item listed in the spreadsheet. In this concern, Sheet2RDF needs to know how to
generate or assign the subject (the URI) for each line. This is described in the subject
mapping section of the Sheet2RDF documentation.

This can be done using the Subject Header editor (the « subject mapping » button that
appears in red) just above the spreadsheet preview :

https://art.uniroma2.it/sheet2rdf/documentation/vb_tool/#mapping_the_subject
https://art.uniroma2.it/sheet2rdf/documentation/vb_tool/#mapping_the_subject
https://art.uniroma2.it/sheet2rdf/documentation/vb_tool/#mapping_the_subject
https://art.uniroma2.it/sheet2rdf/documentation/vb_tool/#mapping_the_subject

Current project: \ocabulzires_Spama B Global Data Managemsent = b2]

VocBench Projects Data Metadala » SPARQOL Hislry Validaton Tools =

Source: | Spreadshest file we Hrowse | example-spresdshestxdsx

Spreadsheet preview "% | | Bubject magping || L X Pearl

URl & skos:prefLabeli@en & | skos:narmower & | skos:exactMatch | & Edit SUbjE"Ct header

concept:00001 Concept A concept 00008 concept:00007
concept:00002 Concept B concept 00007 concept:00008
concept-00003 Concept C concept: 00003 concept:00009
concept-00004 Concept D concept 00009 concept:00010
concept:00005 Concept E concept00010 concept 00011

Click on the « subject mapping » button to start the subject mapping. The Subject Header
Editor appears where you can configure the subject mapping :

Subject Header editor

Header@®: | URI hd
PEARL feature: = col 0

Node ID@ : subject

Type: [Asserttype @
Sanitization @ - - Trim Remove double spaces Remove punctuation wrd Convert case Lower case W
Converter
Mame Description RDF Capability URI

Default converter.

If it is used with the i’ capability, it alURI ing the baseUri to the given input. If the input string is already a UR), it returns
the same.
Otherwise. i it is used with the Titeral’ capability, it simply retums the given input as a3 Literal.

DefaultConverter node codardefault

Select the subject column and the type

e Select the column from your file from which the subject mapping will be determined.
Depending on the cases, this can be a column containing a string identifier, a
complete URI identifier, or a label (see below)

e You can also assign a type (rdf:type) to every subject that will be created in the
import. For this, check the “Assert type” box and select the class that will be assigned
as a type to every subject. Typically, in SKOS projects, you would select
“skos:Concept” to populate a controlled vocabulary :

Subject Header editor

Header@: WURI v

PEARL feature: col

Lo
Node ID@ : subject

Type: skos-Concept @ Assert type @

Sanitization @ - - Trim Remove double spaces Remove punctuation 17 Convert case Lower case W

Go to the Converter section below to select the converter you need. The converter is
responsible for generating the URI of the subject from the column content.

Case 1 : the table does not contain any usable identifier

In case the table does not contain any usable identifier, select “RandomIdGenerator”.
For example:

| B C D
skos:prefLabel@en skos:narrower skos:exactMatch

Concept A concept:00006 concept:00007

Concept B concept:00007 concept:00008
Concept C concept:00008 concept:00009

‘RandomIdGenerator” generates a random URI and assigns it to the subject node.

Subject Header editor

Generates a resource by compiling a <template> expression (1st parameter of the converter).

The <template> is composed of placeholders that are replaced by values obtained from the ofher arguments passed to the converter,in the same

order of presentat . depending on the name of the placehoider.

This is the list of avalable placeholders:

%s : string of the input. For IRIs = the string representation of the IR, for lterals it i the lexical form node codarformatter
9%n- local name in case of IRI

9%d- datatype IRl in case of iterals

%I lang in case of language tagged iteral

15 : the value from the feature path of the previous converter in a converter chain

LexiconiDResoerConverier CeNeTales @ URI by either pesoue 'emm 9 ang . f no resource is

i codaclexiconiDResolver
retrieve, then it just retum the converter one)

Generates a URI by either fesource from using

o pe and . ifno resource is
retrieve, then it just retum the the converter one)

PropPathiDResolverConverter i coda-propPathiDResolver

prefix ith ‘sequence. The converter takes two input
parameters:
- xRole: tells the nature of the resource. Avaiiable
- args: a map of urther optional nts. They depends on as follow:
- concept (for skos:Concepts)
- labet preferred Iabel of [
- schemes: the concept schemes to which the concept is being attach

m of the
the moment of s creation (seriaiized as a Turtie

collection)
- conceptScheme (for skos:ConceptSchemes)
- label: the. preferred label of Label)

ur codarandidGen

- labet preferred label of (or iteral form of the Label)
-xLabel (for skosxtLabelss)
- lexicalForm: the lexical form of the skosx!:Label

to
- lexicalizationProperty: the property used for attaching the label
- xNote (for reified skos:notes)
- value: the content of the note
- annotatedResource: the resource being annotated
- noteProperty: the property used for annotation
- A custom prefix that will e placed befor the randomic sequence.
Produces a resource by replacing placeholder in the template vith values passed as arguments

RegexpConverter SNUM the e regex of regexes (similr to what it is done in Java replaceAl) rode cosareers

Below the converter selection you can select the “Signature” of the converter, with 3 possible
choices:

Converter parameterization:

Signature

urifcodazrandidGen())
urifcoda-randidGen(String xRole])

uri{eodacrandidGen(String xRole, Map args))

1. With the first choice “uri(coda:randIdGen())”, the generator will produce URIs
with a serial of eight random numbers, preceded by the “undetermined” prefix, such
as <https://data.sparna.fr/vocabulaires/testfundetermined_9ab40489>

2. With the second choice “uri(coda:randIdGen(String xRole))”, the generator will

produce URI with a specified “role”. We recommend to use this signature. The role
needs to be selected as an argument:

Params

ki xRole

concept k

conceptScheme
skosCollection
xlLabel

xMote

Other

The “roles” are the ones known by VocBench, and cannot be changed. Typically you
would choose “concept” when importing Concepts in a SKOS project, or “individual”
when importing individuals in an OWL project. The generated URI will look like
<https://data.sparna.fr/vocabulaires/test#c_9ab40489> (“c” corresponds to the prefix
for the “concept” role).

3. More advanced options can be provided with the third choice
“‘uri(coda:randIdGen(String xRole, Map args))”, but this is for advanced
usage

The generated URI will always use, by default, the base URI of the project as the beginning
of the URI. You can adjust this by modifying the “Default namespace” parameter of the
generator:

Default namespace @ : @ | hitps:/data.spama.frvocabulairestest/

Don’t forget the final “#” or “/” in this case.

Case 2 : the table contains an existing unique identifier (numerical or alphabetical)

In case when the table contains an existing unique identifier (numerical or alphabetical),
select “DefaultConverter”.

For example:

https://data.sparna.fr/vocabulaires/test#c_9ab40489

| A B
URI skos:prefLabel@en

C

skos:narrower

D
skos:exactMatch

one Concept A

concept:00006

concept:00007

Concept B

concept:00007

concept:00008

-hUJNHL

three Concept C

concept:00008

concept:00009

Subject Header editor

Header@: URI v
PEARL feature: col_0

Node ID@: subject

Type: skos:Concept @ B asserttype @
Sanitization @ : | @ Trim Remove double spaces Remove punctuation " Convertcase Lower case v
Converter
Name Description RDF Capability URI

Default converter.

Lvan:“ D used wih the "uT capabilty, i generates a URI concatenaling the baseUri to the given input. I the nput sting is aready a URI,itretums the COREED

Othenise, iftis Used vith the ‘teral capabilty, it simply returns the given input as a Literal.

DefaultConverter

Generates a resource by compiing a <template> expression (1t parameter of the converter).

The <template> is composed of placeholders that are replaced by values obtained from the ofher arguments passed to the converter, in the same

order of presentation. The arguments are processed in different way, depending on the name of the placenolder.

This is the list of avalable placeholders:

%s : string of the input. For IRIs = the sring representation of the IR, for lterals t is the lexical form node
9%n- local name in case of IRI

9%d- datatype IRl in case of lterals

%I - lang in case of language tagged literal

Is - the value from the feature path or the previous converter in a converter chain

coda:formatter

“DefaultConverter” will concatenate the content of the column to the base URI of the

project (you can modify this base URI by adjusting the “Default namespace” option at the
bottom).

Case 3 : the table already contains a complete URI identifier

In case when the table already contains a complete URI identifier, select
‘DefaultConverter”.

For example:

Spreadsheet preview 4% || Subjectmapping | | P || L | &
URI & skos:prefLabel@en & skos:narrower [# skos:exactMatch
hitps://data sparna.fr/vocabulaires/test#00001 Concept A hitps://data.spama.fr/vocabulaires/test#00006 concept:abcd
hitps://data.spama.frivocabulaires/test#00002 Concept B hitps://data.spama.fr/vocabulaires/test#00007 conceptefgh
hitps://data.spama.fr/vocabulaires/test#00003 Concept C hitps://data.spama.fr/vocabulaires/test#00008 conceptijkl

Subject Header editor

Remove double spaces Remove punctuation " Convertcase Lower case v

RDF Capability URI

e urf capabilty, t generates a URI concatenating the baseUr o the given input. If the input string i already a URI, it retums the coda gefautt

node coda:formatter

For IRIs = the string e

joed lteral
Is - the value from the feature path or the previous converter in a converter chain

In this case the converter will simply use the provided URI in the column as the subject URI.

The additional predicate-object

Finally, a section at the bottom allows the definition of additional predicate-object pairs to
relate to the subject resource.

As an example, for a SKOS project, if we want to add the Additional predicate-object » «
skos:inScheme » to link the items of the file to the ConceptScheme of the vocabulary, we
need to specify the relation there. In this case, select “skos:inScheme” property in the
Predicate field :

...................................... TR
- noteProperty: the property used for annotation
- A custom prefix that will be placed befor the randomic sequence.

Produces a resource by replacing placeholder in the template with values passed as arguments:

RegexpConverter
gexp SNUM : the value matched in the regex according to the group applications of regexes (similar to what it is done in Java replaceAll)

~-Converter p ization:

Signature

uri =F

Default namespace @ : @ hiips:/idata_ spama.friveille/vocabulaires/concept_#

Additional predicate-object

Predicate: htlp:J’Mww_wa_orga’2004a’02fskos.fcure#in8chemq & Object: IRl kv

Then pick up the ConceptScheme URI of your vocabulary to relate to the subject resources.

Once the Subject mapping is done, the Subject mapping button turns green and a green dot
with an [s] appears in the header of the column containing the identifiers. This means that
this column contains the subjects of the triples that will be generated:

) skos:Concept (£ sk
1

Define each column mapping

Now, you need to specify how each column will be mapped.

If the column naming rules have been followed !

If the column naming rules described earlier have been followed, the mapping will be
automatic and you will see the columns in green.

For example, consider the following table:

Spreadsheet preview

Bskus:ﬂoncept | skos:prefLabeli@en £ | | skos:definition@en [| skos:broader |

1 agent An agent...

2 person A person... 1
3 organization An organization... i
4 document A document...

5 report A report... 4
[webpage A webpage... 5

This table has been mapped fully automatically by Sheet2RDF.

Note how:
1. ltuses skos:Concept as the header indicating the subject column on a column
giving the identifier of each entry
2. ltuses property URI skos:preflLabel, skos:definition, skos:broader for the
other columns headers
3. ltuses “@en” to indicate the language for the preferred label and the definition

In such a case, you can directly generate the PEARL mapping by clicking the blue arrow on
the top right corner of the subject mapping panel:

A8, | | subject mapping & - M Pearl

Generate Pearl [
pret

prei

prei

Otherwise follow the steps below to configure the mapping columns by columns.

To map a column, click on the pencil icon in the column header:

Spreadsheet preview

concept [| parent

agent EMPTY
person agent [l
organization agent

The Header Mapping Editor window will open:

Header editor

Header: parent

PEARL feature: col_1_parent

Nodes @

Node ID Node type

Graph applications @

Ignore header @

Converter

i

Delete @

“Header” contains the name of the column you are working on
“PEARL feature” contains the name of the associated variable that will be used in the

Pearl script.

These are automatically assigned, there is no need to modify these 2 fields.

Logic: node and graph application

The header mapping configuration is done in two steps:

1. in the “Nodes” section, you will specify a procedure to convert the column data into

an RDF value

2. in the “Graph Applications” section, you will indicate how the final triple(s) will be
constructed, typically by simply selecting a predicate to refer to the node constructed

in the first step.

Create the node

Click on the “+” in the “Nodes” panel to create a new node. This will display the node editor

form:

Node editor

ID: | pref_label
Type: literal v
Sanitization@®: @ Trim Remove double spaces Remove punctuation ? Convertcase Lowercase ™

1. Enter an ID for the node, this can be any variable name, e.g. “pref_abel”

2. Select its target type : either a literal value (string, date, boolean, integer, etc.), or a
resource (URI)

3. Optionally, select some sanitization options, if needed.

Then you need to select the converter to generate the value. The converter to select
depends on the use-cases described below.

Case 1: map a string column (or with a datatype)

The simplest case is when we have the column contains a basic string value, for example
the « label » column in the table below:

A A B C D

1 URI label children concepts related concepts
2 concept-001 A concept: 00006 concept: 00007
3 concept-002 B concept: 00007 concept: 00008
4 concept-003 C concept: 00008 concept: 00009

In this case select “DefaultConverter”.

Converter

Name Description RDF Capability URI
Generates a literal with datatype xsd date. The input value is parsed (compatibly with a set of recognized pattens) and is formatied according to the standard

DateConverter format (IS0 8601) yyyy-MM-dd. If no input value is provided, the converter generates the curent date. If the input value cannot be parsed, the converter iteral coda:date

throws a ConverterGonfigurationE xception.

Generates a literal with datatype xsd:dateTime. The input value is parsed {compatibly with a set of recognized patterns) and is formatted according to the
standard format (ISO 8601) yyyy-MM-ddThh:mm:ss, If no input value is provided, the converter generates the current datetime. If the input value cannot be

DatetimeConverter iteral coda:datetime
parsed, the converter throws a ConverterConfigurationException.
The converter takes the same optional parameters of the codaztime converier.
Default converter.
DefaultGonverter If it is used with the ‘uri’ capability, it generates a URI concatenating the baseUri to the given input. If the input string is already a URI, it returns the same. node coda:default
Otherwise, if it is used with the Yliteral’ capability, it simply returns the given input as a Literal.
The string column will be mapped as is, using the content of the column.
Optionally, you can associate a datatype to the generated value:

Converter parameterization:
Signature

literal #=F
anguage

datatype

Gancel

This is useful when your column contains values of a specific pattern, such as booleans
“true” / “false”, or dates with the structure “yyyy-mm-dd”.

Case 2: map a column with a language
In the case where the column contains a string to be associated with a language tag, such
as a label, a synonym, or a definition, use “LangStringConverter”.

This converter will generate a literal with a language tag to be specified. Select the signature
“literal(coda:langString(String langArg))” in the signature panel, and enter the
target language code on the right:

AR P Pt § P 1 €A 18 L S AT £ | S AL] W e T | S L R Y I [[P
Converter parameterization:

Signature Params (-]

literal(codalangString()) +=F & langArg en|

literal(codarlangString(String langArg)) +=F A

Case 3: map a column containing a complete URI

In the case where the column contains a full URI, like see column C in the example table
below:

A A B C D

1 URI label children concepts related concepts
2 concept-001 A http://concept-004 concept: 00007
3 concept-002 B http://concept-005 concept: 00008
4 concept-003 C http://concept-006 concept: 00009

Also use “DefaultConverter”. The default converter will automatically determine that the
value is a URI, and will use it “as-is”, using the content of the column.

Case 4: map a reference to another entry with an ID

There are cases where a column from the table makes a reference to the identifier of
another entry, for example to refer to a parent or related entry. This is the case with the
“parent” column below:

=
m
3
)

label definition parent

ID

1 agent An agent...

2 person Aperson... 1
3 organization An organization... 1
4 document Adocument...

5 report Avreport... 4
& webpage Awebpage... 4

In this case, use “DefaultConverter”, which will concatenate the base URI of the project
with the content of the column.

Case 5 : explicitly ignoring a column in the mapping

It may happen that columns in the file need to be ignored and will not be converted. In this
case, edit this column mapping and tick the “ignore header” checkbox on the top right corner
of the “Header editor” dialog:

1 lgnore header €@

This will make it clear that the column has been reviewed and explicitly excluded from the
mapping.

Specify the graph application

Once you have mapped the node, using one the use-cases above, you need to specify how
this value will be used in the resulting triple. This is done in the “Graph application” section
which allows you to declare an RDF triple model.

In the Graph application section, click + and choose “Simple Graph Application”.

Simple Graph Application

Property: skos:prefLabel -
Range: rdfz:Literal
Range N
Plaim Literal T
type:
Lang: Engligh (en) v BB

Mode: r| +

col_2_node literali@en

Cancel

Select the target predicate to use in the “Property” field, by clicking on the blue folder. This
property must be defined in the ontology underlying your project in VocBench (so the
ontology needs to have been imported first).

The Range field is automatically populated and cannot be edited.

Choose a Range type to specify the type of the triple object. It can only take two values:
Literal (for text) or Resource (for a URI). In our example for the definitions, we choose Literal
and choose DataType rdf:langString (since we set a language for the Node).

In the “Node” field select the Node you created in the previous section. Most of the time, and
for simple mappings, there is only one Node here to select from. This will be the object of the

generated triple.

Click OK and then OK again to close the Header editor window.

Status of column mapping : green / orange / red headers

While you work on your column mapping, a legend is available just bottom right of the
mapping window : the color of each column header allows you to check the current status of
each column mapping.

B H=ader not configured
B H=ader with at least a walid configuration
Header partially configured {e.g. only node defined)
B He=ader ignored
B Incompleted Subject header
B Header used for the subject mapping

Lepend =

Black : Header not yet configured
Green : Header with at least a valid configuration
: Header partially configured (e.g. only node defined, but not graph
application)
: Header was ignored
Red : Incompleted Subject header
Green S icon : Header used for the subject mapping

/\ Only the green headers will be converted in the end

Wizard : advanced use-cases

How to refer to automatically assigned URI from another column

Consider the example below:

| A B C D
T Concept parent 1 parent 2 parent 3
2 Concept A Concept D Concept G Concept]

3 Concept B Concept E Concept H Concept K

4 Concept C Concept F Concept I Concept L

The table does not contain any usable ID. URIs will be assigned automatically to each
Concept. In the “parent 17, “parent 2” and “parent 3” columns, we need to refer to the URI

that has been automatically assigned to the corresponding Concept.

“‘Memoize” in the Subject column

When defining the Subject mapping, use the “RandomIdGenerator”.

Subject Header editor

Header @ :

PEARL feature: col 1

Node ID@: subject

skos:prefLabel@en

Type: skos:Concept

[+ Assert type €

Lower case v

coda:default

Sanitization®: & Trim Remove double spaces Remove punctuation ;1?7 Convert case
Converter
Name Description RDF Capabllity URI
Default converter.
DefaultGonverter If it is used with the 'uri’ capability, it generates a URI concatenating the baselri to the given input. If the input string is already a URL, it returns the node
same.
Otherwiss, if it is used with the 'literal' capability, it simply returns the given input as a Literal.
Generates a resource by compiling a <template> expression (1st parameter of the converter).
The <template> is composed of placeholders that are replaced by values obtained from the other arguments passed to the converter, in the same
order of presentation. The arguments are processed in different way, depending on the name of the placeholder.
This is the list of available placeholders
FormatterGonverter %s : string representation of the input. For IRIs = the string representation of the IRL, for literals it is the lexical form node

LexiconlDResolverConverter

PropPathiDResolverConverter

RandomldGenerator

%n : local name in case of IRI

“%d : datatype IRI in case of literals

<l : lang in case of language tagged literal

Is : the value from the feature path or the previous converter in a converter chain

Generates a URI by either retrieving such resource from the dataset by using the passed PropertyPath and theobjectValue or, if no resource is
retrieve. then it just return the input one (normally the resource generated byanother converter placed before this one)

Generates a URI by either retrieving such resource from the dataset by using the passed PropertyPath and theobjectValue or, if no resource is
retrieve, then it just return the input ane (normally the resource generated byanother converter placed before this one)

Randomic converter. Generates a URI concatenating a prefix with a 8-digits hexadecimal randomic char sequence. The converter takes two input
parameters:
- xRole: tells the nature of the resource. Available
- args: a map of further optional arguments. They depends on the xRole parameter as follow:
- concept (for skos:Concepts)
- label: the accompanying preferred label of the skos:Concept (or literal form of the accompanying xLabel)skos:Concept
- schemes: the concept schemes to which the concept is being attached at the moment of its ereation (serialized as a Turtle
callection)

P (for skos:C:
- label: the accompanying preferred label of the skos:Concept (or literal form of the accompanying xLabel)
- skosCollection (for skos:Collections)

- label: the accompanying preferred label of the skos:Collection (or literal form of the accompanving xLabel)

uri

uri

Use its second signature, with a “role”, and select role “concept” (because we
are importing concepts)

Converter parameterization:

Signature

uri{coda:randldGen())

Params

& xRole concept

uri{coda:randldGen(String xRole))

uri{coda:randldGen(String xRole, Map args))

Memoize @ | Default

v+

coda:formatter

coda:lexicon|DResolver

coda:propPath|DResolver

codarandldGen

[o s

Case insensitive @

Then check the “Memoize” option. Because we know we will need to refer to those same

URISs later (in the parent column), this will create a “cache” of all generated URIs associated

to the content of the column (= the label), so that we can refer to this cache later.

&

You can manage multiple caches with the cache name. In simple cases, leave the “Default”
cache, but optionally you can give a name to the cache by clicking the “+” (if we have
multiple URI assignment to do in multiple columns, but this is not our case here)

“Memoize” in the column mappings

When mapping each of the “parent 17, “parent 2” and “parent 3” columns, use the same
procedure:
e Use the “RandomIdGenerator”.
e Use its second signature, with a “role”, and select role “concept” (because we are
importing concepts)
Check the “Memoize” option
Select the same cache name as the one you picked up during Subject mapping
(“Default” by default)

Converter parameterization:

Signature Params 2]

uri{coda:randldGen()) & xRole concept v
uri{ceda:randldGen(String xRole)}

uri{coda:randldGen(String xRole, Map args))

Memoize @ | Default v+ Caseinsensitive @ &

This tells Sheet2RDF : “Whenever you find a label to which you already assigned a URI
before (in the cache) then reuse that same URI”

/\ Warning : if the column contains a label that was not part of the Subject mapping, then a
new URI will be created. The consistency of the table needs to be ensured before importing !

How to lookup URI of existing entries in VocBench from their label

Consider the following example:

1 D labe related to
2 1 report
3 2 notification 123A
4 3 agreement 4568
5 4 agenda 789C
5 minutes

J | O~

In this table, the “related to” column contains a reference to some ID of an existing Concept
already imported in VocBench. This is not the URI, but could be e.g. the value of a

skos:notation or dct:identifier property associated with the Concept. We would like
this column to be mapped to a skos:relatedMatch triple.

We will need to do a “lookup” in VocBench to find the URI of the corresponding Concept with
a “PropPathIDResolver”.

To proceed we need to create 2 Nodes (= 2 values) instead of just one:

e first, one node that will be the formal value used to search in VocBench with proper
language or datatype
e second node that will be the result of searching in VocBench the URI that has the first

node as the value of a given property

/N\ Order matters here ! the nodes need to be created in this order.

Define the first node containing the exact value to lookup

First create a first node that maps the column value to the exact value to be searched in
VocBench. By “exact value” we mean the literal with the adequate datatype or language tag.
To do this, follow the steps explained above and use either a “DefaultConverter” or a
“LangStringConverter”.

In our example we create a node called “related_to_value”, of type Literal, with a
DefaultConverter, and an xsd:string datatype because we know that the value to lookup
have this structure:

Node editor

D: related_to_value

Type: literal v
Sanitization @ : & Trim Remove double spaces Remove punctuation L7 Convert case Lower case Vv
Converter

Name Description RDF Capability URI

Generates a literal with datatype xsd:date. The input value is parsed {compatibly with a set of recognized patterns) and is formatted according to the standard
DateConverter format (ISO 8601) yyyy-MM-dd. If no input value is provided, the converter generaies the current date. If the input value cannot be parsed, the converter throws literal @ coda:date
a ConverterConfigurationException.

Generates a literal with datatype xsd:dateTime. The input value is parsed (compatibly with a set of recognized patterns) and is formatted according to the
standard format (IS0 8601} yyyy-MM-ddThh-mmss. If na input value is provided, the converter generates the current datetime. If the input value cannot be

DatetimeConverier . . literal @ coda:datetime
parsed, the converter throws a ConverterConfigurationException.
The converter takes the same optional parameters of the coda:time converter.
Default converter.

DefaultConverter It it is used with the "ur’ capability, it generates a URI concatenafing the baseUri to the given input. If the input string is already a URI, it returns the same. node coda default

Otherwise, if it is used with the literal' capability. it simply retumns the given input as a Literal.

Generates a resource by compiling a <template= expression (1st parameter of the converter).

The is of placeholders that are replaced by values obtained from the other arguments passed to the converter, in the same order of
presentation. The arguments are processed in different way, depending on the name of the placeholder.
This is the list of available placeholders:
FormatterConverter %s : string representation of the input. For IRIs = the string representation of the IR, for literals it is the lexical form node codafermatter
%n :local name in case of IRI
%d : datatype IRl in case of literals
%l : lang in case of language tagged literal
Is : the value from the feature path or the previous converter in a converter chain

LangStringConverter Produces a language tagged literal language tag provided as parameter. literal @ codalangString

Produces a resource by replacing placeholder in the template with values passed as arguments
RegexpConverter o . . node codaregexp
$MUM : the value matched in the regex according to the group applications of regexes (similar to what it is done in Java replaceAll)
Generales a literal with datatype xsd:time. The input value is parsed (compatibly with a sei of recognized patterns) and is formatled according to the slandard
format (ISO 8601) hh:mm:ss. If no input value is provided, the converter generates the current time. If the input value cannot be parsed, the converter throws a
ConverterConfigurationException.
The converter takes optional parameters
- an offset, which admitted values are:
- undefined: the oufput time will not contain any offset, if the input value has offset it will be ignored.
TimeConverter - Z: Zulu timezone. The "Z" timezone is simply added at the end of the output time: literal @ codatime
- <hhs:<mms: an offset, specified in hours and minutes, that is applied to the input value, or replaced if the latter already contains an offset.
se: pplied the same offset of the input.

Converter parameterization:

Signature

datatype ~ xsd:string ~
literal 4=F

After the node creation don’t proceed to the “Graph application” yet ! as this first node is only
used to do the lookup, but will not be mapped directly to the graph.

Define the second node containing the lookup result

Now declare another node. When declaring the mapping for this node, we will do a lookup of
the first node.

To do this you can either use:

e The “PropPathIDResolverConverter” that searches the value in a property to be
specified (e.g. skos:notation)

e The “LexiconIDResolverConverter” that searches for labels (prefLabel, altLabel or
other kinds of labels, depending on the lexicalisation parameter of the project).

We will use the “PropPathIDResolverConverter”. Our second node is called

“related_to_lookup”, and it is of type “Resource” because it will contain the URI of the
Resource having the specified ID.

Node editor

ID: related_to_lookup

Type: resource ~
Sanitization @ : - Trim Remove double spaces Remove punctuation e v Convert case Lower case
Converter

%n : local name in case of IRI

%%d : datatype IRI in case of literals

%l : lang in case of language tagged literal

Is : the value from the feature path or the previous converter in a converter chain

Generates a URI by either retrieving such resource from the dataset by using the passed PropertyPath and theobjectValue or, if no resource is
retrieve, then it just retun the input ene {normally the resource generated byanother converter placed before this one)

LexiconlDResolverConverter uri codalexicon|DResolver

Generates a URI by either retrieving such resource from the dataset by using the passed PropertyPath and theobjectValue or, if no resource is

PropPathiDResolverConverter
P retrieve, then it just return the input one {normally the resource generated byanother converter placed before this one)

uri coda:propPathIDResolver

Randomic converter. Generates a UR| concatenating a prefix with a 8-digits hexadecimal randomic char sequence. The converter takes two input
raramatare:

In the Signature panel we use the signature with 3 parameters:

1. The value that we search : this is a reference to the first node we created in the
previous step, preceded by a “$” sign, in our case $related_to_value

2. The full URI of the property that we search. This can be a prefixed URI if the prefix is
known, in our case skos:notation

3. A fallback value if not found : “<http://error.org>” - so that we can check after

conversion that this fallback value is never present. Use angle brackets around this
URI.

The parameters look like this:

Converter parameterization:

Signature Params (-]

wri{codapropPathlDResclver(Value object, String propPath)) «=F 4 object Srelated_to_value

uri{coda-propPathlDResolver{Value object, String propPath, IRI fallbackiRI)) 4+=F & propPath skosofation

o« fallbackIRI <hitp/ermar.org>

Create the graph application

When defining the Simple Graph Application, select the desired predicate as usual
(skos:relatedMatch in our case) and make sure you select the second node
(related_to_lookup in our case) :

http://error.org

Simple Graph Application
Property: skos relatedMatch @
Range: skos:Concept
Range type: Resource '
Type: e Assert type 0
Mode: |+
related_to_walue literal™*xsd:string
related_to_lookup uri{coda:propPathiDResolveri..)) T

Wizard conclusion : Generate the PEARL mapping

When the mapping of every column is done, click the blue “Play” arrow in the top right of the
mapping panel to generate the mapping in the PEARL code panel.

The Pearl section shows the Pearl code generated from the configurations you have made.
You do not need to know the Pearl programming language to use the tool.

VocBench Projecls Dala Meladala ~ SPARGL History

Valdation Tools ¥

Source: Sprasdshest file v Browss | example-spreadshest xisx

(o ®
Sheatl || Feuilel

Spreadsheet preview *% | [Subject mapping| [(L& || | Pearl

D URI & | skos:preflabel@en skos:narrower 4

skos:exactMatch (£ " feafs mrtpsim
p— Concepth . - . Generate Pearl
conoept-002 Concept B i i -

pre
conoept-003 Conoept C i i N

OPTIONAL
OPTIONAL
OPTIONAL

Legend ~

Optional: it is possible to modify PEARL manually (to create conditional rules) - see the
advanced section for cases where you may want to modify the mapping manually.

For more information, see the Pearl documentation.

https://art.uniroma2.it/coda/documentation/pearl.jsf

Execute the PEARL mapping

Once the PEARL mapping is generated, you can apply it to convert the spreadsheet. Click
the Green Play button in the Pearl window to generate the triplets. You can explore the
triples in the Generated Triples Preview window at the bottom.

Current project: | Vocabulaires_Spama | &)

VocBench

Source:

Shest!

Spreadsheet preview

Global Data Management » | | 'D

Projects Metadata + ROL

History
Spreadsheet file v

Browse | example-spreadsheet xlsx

Feuile1

Validation

%

Tools

Subject mapping| b | L | & Pearl

About VacBench »

Mult sheet actars | B | B B - | 2 &

DURI & | skosipreflabel@en & skas:narrower &4 skos:exactMatch
concept-001 ConceptA i 00 rule Lt.unironal.art.Sheet2ROFAnnotation id:row
concapt-002 Concept B hitps:i/data.spamna.frivocabulairesite s#00007 concept:00008 redes ; . . N
subject uri cel_8/value
cancept-003 Concept G i oncept00

Generated triples preview

e

Subject

<hitps:fidata spama friveleivocabulairesiconcept_Sconcept001>
<hitps://data spama. ivedeivocabulairesiconcept_concept-001>
<hitps://data spama. ivedeivocabulairesiconcept_concept-001>
<hitps://data spama. rvedieivocabulairesiconcept_concept-001>
<hitps:{ldata spama. rvedeivocabulsiresiconcept_concept-002>
<hitps:{idata spama.frivelaivocabulairesiconcapt_Sconcept-D02>
<hitps:{idata spama.frivelaivocabulairesiconcapt_Sconcept-D02>
<hitps:{idata spamafrivelsivocabulairesiconcapt_Sconcept-D02>
<hitps:{idata spama.frivedivocabulairesiconcapt_Sconcept-003>
<hitps:/ldata spama. rvedieivocabulairesiooncept_fooncept-003>
<hitps:/ldata spama. rvedieivocabulairesiooncept_fooncept-003>
<hitps:/ldata.spama. rvedieivocabulairesiooncept_concept-003>

ol 2 node uri col

ol 1_node 1lteralgen

col_1fvalue

alue

col_3_node url col_3/value

greph =

Ssubject pafitype skes:Cencept

OPTIONAL
OPTIONAL
OPTIONAL

skosipreflabel $col 1
skos inarrower $col

skos texact¥atch $c

Legend ~

Fradicate

org/ 100802722 e sy VP

0rgi199802/22 sy v

org/1888/02/22 sy VP

Download or import the resulting triples

Object

<hnttp: e w3 015200410 2/skos core4Concept>
*Concept & @en
<nitps/idata. spama frivocabulsires/tes#00008>
<concept00007>
<nitp:/wvwww3 erg 20040 2iskos core#Conoept
“Concept 5'@en
<hitpsidata spama friuocabulsirestes#00007>
<concept00008>
<hitp:{uweiw3 o1g 200410 2/skos core#Concept>
“Conozpt C'@en
<nitpsidata spama frivocabulsires/test00008>
<concept00008>

The last section, Generated triples preview, allows you to check the result of the
transformation into RDF.

Here you can export the generated triples under various formats :

Generated triples preview

ok ok ok ko ok ok o+

Subject

<https:iidata sparna friveilleivocabulsires/concept_concept-001=
<https:iidata sparna frivelleivocabulaires/concept_#concept-001=
<https:/idata.spamna. frivellevocabulaires/'concept_#concept-001=
<https:fidata.sparna. frivelliavocabulsires/concept_gconcept-001=
<https:fidata spama frivelliaivocsbulzires/concept_Sconcept-002>
<https:fidata spama frivelliaivocsbulzires/concept_Sconcept-002>
<https:lidata spama friveilleivocabulziresiconcept_#concept-002>
<https:/idata.spamna. frivellevocabulzires/'concept_Sconcept-002=
<https:fidata. spama. frivellavocabulaires/concept_Zconcept-003=
<https:fidata spama. frivellavocsbulaires/concept_#concept-003=
<https:fidata spamna. frivelliaivocabulaires/concept_Sconcept-D03>

<https:iidata sparna friveilleivocabulsires/concept_#concept-D03=

Predicate
<htip:lwwe. w3 org/ 180010272 2-rdf-syntax-nsdtype’
<htip:lwwe. w3 org 2004102 skos lcoresfpreflabel=
<htip:/fwwwe. w3.org200402 skos lcorefnammowers
<http:eww w3 org/ 2004102 skos /corefexactMatch=
<http:/eww w3 orgl 1ER0/0222rdf-syntax-nsEype=
<htrp:ew. w3.org 2004102 s kos icoresipraflabel=
<http:lwwwe w3 org 2004102 skos leoresnarmowers
<htip:/fwowwe. w3.orgl2004/02/skos lcorefexactMatch>
<http:/eww. w3 org/ 188810272 2rdf-syntax-ns&#type>
<http:emw w3 org/ 2004102/ kos icorepreflsbel=
<htrp:eww. w3 org/ 2004102 skos fcorenamower>
<http:wwe. w3 orgi2004/102/skos coreffexactMatch>

Object
<httpciiwne w3 org/2004/02/skos/core
"Concept A"@en
=https:/'dsta.spamna.frivocabulairesite
<concept00007=
<httpciiwerecwd . ong/2004/02/skos/cor
“Concept B i@en

=https:/idsta sparna frivocabulsiresite
=concept:00003>
<httpciiwerecwd . ong/2004/02/skos/cors
“Concept C@en

<https:iidata spama.frivoeabul siresite
<concept00008=

LAErY

Generate triples

B | | Export...~

B Exqort.v
BinaryRDF
JEON-LD
MN-Quads
M-Triples
M3
MOJSOMN-LD
ROFLJSON
ROFXML

Turtle

Turtle-star

If you prefer to use VocBench to work on your resource, click on the “Add triples” button to
populate your RDF database. The triples then get inserted inside the VocBench project.

Load / save the mapping wizard or the PEARL mapping

Both the mapping configuration and the PEARL mapping can be saved and reloaded.

Load / save the mapping wizard

The configuration template can be exported using the download buttons and used to
reproduce this process identically and effortlessly on another similar dataset.

Shesti Feuillz1

Spreadsheet preview

D VRl | | skos:prefLabel@en & shos:narrower B

concept-001 Concept & hitps://data.sparma.frivocabulairesites0000G
concept-D02 Concept B hitps://data.sparma.frivocabulairesites00007
concept-003 Concept C https://data. sparma.frivocabulairesitess 00008

Load / save the PEARL mapping

skos:exactMatch B

Subject mapping | | || L & Pearl

Export sheet Mapping Status

concept 00007 priote
concept: 00008

subject url col_8/value
concept:00008 col_1_node literal@en col_1,

col_2_node wri col_2/value

eol_3_node uri cel 3fvalue

graph =
gsubject rdfitype skos:Conce
OPTIOMAL fsubject skos:pre
OPTIONAL
OPTIONAL

Legend =

The generated Pearl script can be exported using the download buttons and used to
reproduce this process identically and effortlessly on another similar dataset

Multi sheet acions | | = B = L X

Pearl Export global Mapping Status

'Y

rule it uniroma?.art. Sheel2RDFAnnOLation Ld:row
nodes =
subject url col_@/wvaluwe
col_1 _node literal@en col_1/walue
col 2 node wri col_2/value

col 3 _node wri col_3fwvalue

graph =
fzubject rdf:type skos:Concept
OPTIONAL fsubject skos:preflabel $col 1 node
OFTIONAL fsubject skos:narrower $col_2 node
OPTIONAL fsubject skos:exactMatch fcol_3_node

Advanced : manual PEARL mapping edition (conditional rules)

Some mapping rules need to be manually done by directly editing the PEARL mapping and
cannot be defined in the mapping wizard. This is the case for conditional rules, when we
need to generate triples only in the case the value in the column is equal, or different from, a
certain value.

Take for example the case of the skos:topConceptOf predicate to relate the root concepts of
a taxonomy to their ConceptScheme: this predicate has to be created only for root concepts,
not for others.

The PEARL language documentation contains a dedicated section on conditional rules.

Conditions are expressed in an additional conditions { ... } section in the rule. The
example below illustrates how the skos:topConceptOf predicate is generated only if the third
column (being the column indicating the parent of the concept) contains the value
“UNKNOWN”.

https://art.uniroma2.it/coda/documentation/pearl.jsf#conditions_for_rule_triggering

Pearl

@Memoized
broader uri(coda:randIdGen('concept’)) col 3/value

graph =
$subject rdf:type skos:Concept .
OPTIONAL { $subject skos:preflLabel $col 1 node . }
OPTIONAL { $subject skos:broader Sbroader . }

rule it.unirema2. art.Sheet2RDFAnnotation id:row2 |
conditions = {
col_3/value IN ["UNKNOWN"] .

nodes =
@Memoized
subject urilcoda:randIdGen('concept’)) col 1/value

graph =
$subject skos:topConceptOf <http://example.org> .

The rule will be triggered only when the condition is set. Note that it is not possible to test for

an empty value in the table (as empty cells do not generate a corresponding value in the

mapping process).

	VocBench Sheet2RDF import guide
	Introduction
	Prerequisites
	Data sheet structure prerequisites

	Prepare the vocabulary project in VocBench
	Alternatives to Sheet2RDF
	Direct RDF loading
	xls2rdf

	Import data using VocBench Sheet2RDF tool
	The Sheet2RDF screen and workflow
	Prepare your data sheet
	Use property URI identifiers as column names (e.g. “skos:prefLabel”)
	Optionally indicate a language tag with @xx
	Optionally use a class URI identifier as the name for a single column (e.g. “skos:Concept”)

	Load your file in Sheet2RDF
	The Mapping wizard
	Automated : mapping based on header names
	Wizard : using wizard screens to create mappings for each column
	Start the subject mapping using the Subject Header editor
	
	
	
	Select the subject column and the type
	Case 1 : the table does not contain any usable identifier
	Case 2 : the table contains an existing unique identifier (numerical or alphabetical)
	Case 3 : the table already contains a complete URI identifier
	The additional predicate-object

	Define each column mapping
	If the column naming rules have been followed !
	Logic: node and graph application
	Create the node
	Case 1: map a string column (or with a datatype)
	Case 2: map a column with a language
	Case 3: map a column containing a complete URI
	Case 4: map a reference to another entry with an ID
	Case 5 : explicitly ignoring a column in the mapping

	Specify the graph application
	Status of column mapping : green / orange / red headers

	Wizard : advanced use-cases
	How to refer to automatically assigned URI from another column
	“Memoize” in the Subject column
	“Memoize” in the column mappings

	How to lookup URI of existing entries in VocBench from their label
	Define the first node containing the exact value to lookup
	Define the second node containing the lookup result
	Create the graph application

	Wizard conclusion : Generate the PEARL mapping

	Execute the PEARL mapping
	Download or import the resulting triples
	Load / save the mapping wizard or the PEARL mapping
	Load / save the mapping wizard
	Load / save the PEARL mapping

	Advanced : manual PEARL mapping edition (conditional rules)

