Layout Management in Various Libraries

1. Qt

These are some of the layout management classes
provided by Qt to arrange various Ul widgets.

QBoxLayout

QButtonGroup

QFormLayout

QGraphicsAnchor

QGraphicsAnchorLayout

QGridLayout
QGroupBox
QHBoxLayout

QLayout

QLayoutltem

QSizePolicy

Lines up child widgets horizontally
or vertically

Container to organize groups of
button widgets

Manages forms of input widgets and
their associated labels

Represents an anchor between two
items in a QGraphicsAnchorLayout

Layout where one can anchor
widgets together in Graphics View

Lays out widgets in a grid
Group box frame with a title
Lines up widgets horizontally

The base class of geometry
managers

Abstract item that a QLayout
manipulates

Layout attribute describing
horizontal and vertical resizing

policy

https://doc.qt.io/qt-5/qboxlayout.html
https://doc.qt.io/qt-5/qbuttongroup.html
https://doc.qt.io/qt-5/qformlayout.html
https://doc.qt.io/qt-5/qgraphicsanchor.html
https://doc.qt.io/qt-5/qgraphicsanchorlayout.html
https://doc.qt.io/qt-5/qgridlayout.html
https://doc.qt.io/qt-5/qgroupbox.html
https://doc.qt.io/qt-5/qhboxlayout.html
https://doc.qt.io/qt-5/qlayout.html
https://doc.qt.io/qt-5/qlayoutitem.html
https://doc.qt.io/qt-5/qsizepolicy.html

QSpacerltem Blank space in a layout

QStackedLayout Stack of widgets where only one
widget is visible at a time

QStackedWidget Stack of widgets where only one
widget is visible at a time

QVBoxLayout Lines up widgets vertically

QWidgetltem Layout item that represents a widget

Code Snippets for Qt layout

The following code snippet shows how to stack different
Ul widgets horizontally:

QWidget *window = new QWidget;

QPushButton *buttonl = new QPushButton("One");
QPushButton *button2 new QPushButton("Two");
QPushButton *button3 = new QPushButton("Three");
QPushButton *button4 = new QPushButton("Four");
QPushButton *button5 = new QPushButton("Five");

QHBoxLayout *layout = new QHBoxLayout(window);
layout->addWidget (buttonl);
layout->addWidget (button2);
layout->addWidget (button3);
layout->addWidget (button4);
layout->addWidget (button5);

window->show();

One H Two H Three H Faur H Five

Horizontally stacked Ul widgets

https://doc.qt.io/qt-5/qspaceritem.html
https://doc.qt.io/qt-5/qstackedlayout.html
https://doc.qt.io/qt-5/qstackedwidget.html
https://doc.qt.io/qt-5/qvboxlayout.html
https://doc.qt.io/qt-5/qwidgetitem.html

The following code snippet shows how to place the
widgets in a grid fashion:

QWidget *window = new QWidget;

QPushButton *buttonl = new QPushButton("One");
QPushButton *button2 new QPushButton("Two");
QPushButton *button3 = new QPushButton("Three");
QPushButton *button4 = new QPushButton("Four");
QPushButton *button5 = new QPushButton("Five");

QGridLayout *layout = new QGridLayout(window);
layout->addwWidget (buttonil,)
layout->addWidget (button2,)
layout->addwWidget (button3, 5
layout->addWidget (button4,)
layout->addWidget (button5,)s

window->show();

| one || Two |

—_

Three]

| Four || Five |

Widgets placed in a grid
Links to the official documentation:-

e Examples for layouts

2.imqui:

These are the classes provided by imgui to
implement grid like layout:-

1. Columns:

https://doc.qt.io/qt-5/layout.html

Columns can be used to add widgets
horizontally till a set number of column as soon
as the last column is reached it resets it to first
column, thus creating a grid like pattern

Code snippet for column:-

ImGui::Columns(2, nullptr, false);
ImGui: :SetColumnOffset(1,)
{

ImGui: :Separator();
ImGui: :Text("Visuals");
ImGui: :Separator();

ImGui: :CheckboxText("Enable Visuals");
ImGui: :CheckboxText("Chams");

ImGui: :CheckboxText("Skeleton");
ImGui: :CheckboxText("Box");

ImGui: :NextColumn();

ImGui: :Separator();
ImGui: :Text("Removals");
ImGui: :Separator();

ImGui: :CheckboxText("No Hands");
ImGui: :CheckboxText("No Smoke");
ImGui: :CheckboxText("No Flash");
ImGui: :CheckboxText("No Sky");

ImGui: :NextColumn();

Live showcase of imgui widgets can be found here.
Imgui also has a method to group different Ul widgets

together. Below is the code snippet from grouping
widgets together.

imgui.begin_group()

imgui.text("First group (buttons):")
imgui.button("Button A")

https://magnum.graphics/showcase/imgui/

imgui.button("Button B")
imgui.end_group()

imgui.same_line(spacing=

imgui.begin_group()

imgui.text("Second group (text and bullet
texts):")

imgui.bullet_text("Bullet A")
imgui.bullet_text("Bullet B")
imgui.end_group()

imgui.end()

Links to official documentation:-

e Grouping Ul widgets
e Implementation of grouping

e |nteresting discussion on grid

3. Pyimqui

Pyimgui provides python bindings for the imgui c++
library. All the core implementations remain the
same. Here’s a quick example of columns
implemented under pyimgui:-

imgui.begin("Example: Columns -
File list")
imgui.columns(4, 'filelist')

imgui.separator()
imgui.text("ID")
imgui.next_column()
imgui.text("File")

https://pyimgui.readthedocs.io/en/latest/reference/imgui.core.html?highlight=layout#imgui.core.begin_group
https://github.com/ocornut/imgui/blob/master/imgui.cpp
https://github.com/ocornut/imgui/issues/857

.next_column()
.text("Size")
.next_column()
.text("Last Modified")

.next_column()
.separator()
.set_column_offset(1,)

Links to the official documentation:-

e Implementation/Example for columns

4. wxPython:

wxPython also supports various layouts in which
widgets can be placed. Although, we can also opt in
for absolute placements i.e. place the widgets as
per specified coordinates. Here are some classes:-

1. wx.BoxSizer

2. wx.StaticBoxSizer
3. wx.GridSizer

4. wx.FlexGridSizer

5. wx.GridBagSizer

Below is a code snippet for wx.BoxSizer:

https://github.com/swistakm/pyimgui/blob/master/imgui/core.pyx

import wx

class Example(wx.Frame):

def __init_ (self, parent, title):
super(Example, self). init_ (parent, title=title)

self.InitUI()
self.Centre()

InitUI(self):
panel = wx.Panel(self)

panel.SetBackgroundColour('#4f5049")
vbox = wx.BoxSizer(wx.VERTICAL)

midPan = wx.Panel(panel)
midPan.SetBackgroundColour('#ededed")

vbox.Add(midPan, wx.ID_ANY, wx.EXPAND | wx.ALL,)
panel.SetSizer(vbox)

def main():

app = wx.App()

ex = Example(None, title='Border')
ex.Show()

app.MainLoop()

if __name__ == '__main__':
main()

wxPython also supports nested grids i.e. one can pass
one grid layout to another grid layout which enables the

users to create very complex Ul's

Links to official documentation:-

e Examples for layouts

https://zetcode.com/wxpython/layout/

Layout Engine In Unity

The layout engine is a part of unity’s Ul toolkit. It helps in
placing visual elements based on layout and styling

properties that are loosely based on CSS properties.

The layout engine is based on Yoga Layout which is an

open source layout engine.

Unity’s main Ul is GameObject oriented Ul which
essentially means that the Ul can be dragged and
dropped into the scene and there is no code that

initializes the Ul. Below is an example:-

| chnier fext... |

| Clear |

On top of the main Ul, unity also supports Immediate

Mode GUI (IMGUI). Which means all the Ul is driven

from code. Below is an example:-

https://yogalayout.com/docs

€ Game
Free Aspect

void OnGUI() {

if (GUILayout.Button("Press Me"))
Debug.Log("Hello!");

The layout engine only works with unity’s main Ul
components and not the IMGUI. Below are some

behaviours of Unity’s layout engine:-

e A container distributes its children vertically.

e The position of a container rectangle includes its children's
rectangles. This behaviour can be restricted by other layout
properties.

® A visual element with text uses the text size in its size
calculations. This behaviour can be restricted by other layout

properties.

These changeable/fluid properties can be modified by a
Style Sheet specific to Unity i.e. USS (Unity Style
Sheets). These sheets are similar to CSS and almost all
properties remain the same with some minor

differences.

The following list provides tips on how to use the

layout engine:

e Setthe and [[ETamto define the size of an element.

o Use the [flcgeatlproperty (in USS: [S n IR EINEEH) to
assign a flexible size to an element. The value of the
property acts as weighting when the size of an element is
determined by its siblings.

o Set the [N OIaIaE e lproperty to row (in USS:
LSS T e eI) to switch to a horizontal layout.

e Use relative positioning to offset an element based on its original
layout position.

o Set the [FFERERproperty to ElIeilid o place an element
relative to its parent position rectangle. In this case, it does not

affect the layout of its siblings or parents.

These Style Sheets are parsed and applied to a
particular Ul element by a custom parser implemented

under Unity’s Ul toolkit.

Links to official documentations:-

e Unity Ul

e Yoga Layout Docs

e Creating Ul in Unity

e Ul Toolkit

e Layout Engine
e USS (Unity Style Sheets)

e Immediate Mode GUI (IMGUI)

Ul/Layout in Unreal Engine

Unreal Engine has a totally different solution to Ul and
layout. Like everything else in the engine, Ul can be
created from a widget blueprint. After creating and

opening the Ul blueprint, this menu opens:-

https://docs.unity3d.com/Manual/com.unity.ugui.html
https://yogalayout.com/docs
https://docs.unity3d.com/Manual/UIToolkits.html
https://docs.unity3d.com/Manual/UIElements.html
https://docs.unity3d.com/Manual/UIE-LayoutEngine.html
https://docs.unity3d.com/Manual/UIE-USS.html
https://docs.unity3d.com/Manual/UIE-IMGUI.html

Here, different sub-widgets are present under the

Common label. These can be dragged and dropped into

the editor.

To actually have some layout in the Ul widgets, UE
provides anchors for the sub-widgets. The sub-widgets
then maintain their positions in the widget w.r.t the

anchor. This is how it looks:-

& Details
Gl TextBlock 211 Il Is Variable Open TextBloc
Eo-

4 Slot (Canvas Panel Slot) I

T

4 Content
Text

4 Appearance

[* Color and Opacity #

The Ul widgets can also be made responsive i.e. react
and adapt to window size. This is done checking the
respective option in the editor. After checking the option,

the Ul responds to window resizing.

Links to official docs/tutorials:-
Tutorial to create custom Ul

Scale Ul w.r.t screen size

https://docs.unrealengine.com/4.26/en-US/InteractiveExperiences/UMG/HowTo/CreatingWidgets/
https://docs.unrealengine.com/4.26/en-US/InteractiveExperiences/UMG/HowTo/ScalingUI/

