
Layout Management in Various Libraries

1.​Qt

These are some of the layout management classes
provided by Qt to arrange various UI widgets.

​
QBoxLayout Lines up child widgets horizontally

or vertically

QButtonGroup Container to organize groups of
button widgets

QFormLayout Manages forms of input widgets and
their associated labels

QGraphicsAnchor Represents an anchor between two
items in a QGraphicsAnchorLayout

QGraphicsAnchorLayout Layout where one can anchor
widgets together in Graphics View

QGridLayout Lays out widgets in a grid

QGroupBox Group box frame with a title

QHBoxLayout Lines up widgets horizontally

QLayout The base class of geometry
managers

QLayoutItem Abstract item that a QLayout
manipulates

QSizePolicy Layout attribute describing
horizontal and vertical resizing
policy

https://doc.qt.io/qt-5/qboxlayout.html
https://doc.qt.io/qt-5/qbuttongroup.html
https://doc.qt.io/qt-5/qformlayout.html
https://doc.qt.io/qt-5/qgraphicsanchor.html
https://doc.qt.io/qt-5/qgraphicsanchorlayout.html
https://doc.qt.io/qt-5/qgridlayout.html
https://doc.qt.io/qt-5/qgroupbox.html
https://doc.qt.io/qt-5/qhboxlayout.html
https://doc.qt.io/qt-5/qlayout.html
https://doc.qt.io/qt-5/qlayoutitem.html
https://doc.qt.io/qt-5/qsizepolicy.html

QSpacerItem Blank space in a layout

QStackedLayout Stack of widgets where only one
widget is visible at a time

QStackedWidget Stack of widgets where only one
widget is visible at a time

QVBoxLayout Lines up widgets vertically

QWidgetItem Layout item that represents a widget

Code Snippets for Qt layout

The following code snippet shows how to stack different
UI widgets horizontally:

 QWidget *window = new QWidget;​
 QPushButton *button1 = new QPushButton("One");​
 QPushButton *button2 = new QPushButton("Two");​
 QPushButton *button3 = new QPushButton("Three");​
 QPushButton *button4 = new QPushButton("Four");​
 QPushButton *button5 = new QPushButton("Five");​
​
 QHBoxLayout *layout = new QHBoxLayout(window);​
 layout->addWidget(button1);​
 layout->addWidget(button2);​
 layout->addWidget(button3);​
 layout->addWidget(button4);​
 layout->addWidget(button5);​
​
 window->show();

​ Horizontally stacked UI widgets

https://doc.qt.io/qt-5/qspaceritem.html
https://doc.qt.io/qt-5/qstackedlayout.html
https://doc.qt.io/qt-5/qstackedwidget.html
https://doc.qt.io/qt-5/qvboxlayout.html
https://doc.qt.io/qt-5/qwidgetitem.html

The following code snippet shows how to place the
widgets in a grid fashion:

 QWidget *window = new QWidget;​
 QPushButton *button1 = new QPushButton("One");​
 QPushButton *button2 = new QPushButton("Two");​
 QPushButton *button3 = new QPushButton("Three");​
 QPushButton *button4 = new QPushButton("Four");​
 QPushButton *button5 = new QPushButton("Five");​
​
 QGridLayout *layout = new QGridLayout(window);​
 layout->addWidget(button1, 0, 0);​
 layout->addWidget(button2, 0, 1);​
 layout->addWidget(button3, 1, 0, 1, 2);​
 layout->addWidget(button4, 2, 0);​
 layout->addWidget(button5, 2, 1);​
​
 window->show();

Widgets placed in a grid

Links to the official documentation:-

●​ Examples for layouts

2.​imgui:

These are the classes provided by imgui to
implement grid like layout:-

1.​Columns:

https://doc.qt.io/qt-5/layout.html

Columns can be used to add widgets
horizontally till a set number of column as soon
as the last column is reached it resets it to first
column, thus creating a grid like pattern
Code snippet for column:-

ImGui::Columns(2, nullptr, false); // You set 2 columns​
​ ​ ​ ​ ImGui::SetColumnOffset(1, 200);​
​ ​ ​ ​ {​
​ ​ ​ ​ ​ ImGui::Separator();​
​ ​ ​ ​ ​ ImGui::Text("Visuals");​
​ ​ ​ ​ ​ ImGui::Separator();​
 ​
​ ​ ​ ​ ​ ImGui::CheckboxText("Enable Visuals");​
​ ​ ​ ​ ​ ImGui::CheckboxText("Chams");​
​ ​ ​ ​ ​ ImGui::CheckboxText("Skeleton");​
​ ​ ​ ​ ​ ImGui::CheckboxText("Box");​
 ​
​ ​ ​ ​ ​ ImGui::NextColumn(); // You go into 2nd column​
 ​
​ ​ ​ ​ ​ ImGui::Separator();​
​ ​ ​ ​ ​ ImGui::Text("Removals");​
​ ​ ​ ​ ​ ImGui::Separator();​
 ​
​ ​ ​ ​ ​ ImGui::CheckboxText("No Hands");​
​ ​ ​ ​ ​ ImGui::CheckboxText("No Smoke");​
​ ​ ​ ​ ​ ImGui::CheckboxText("No Flash");​
​ ​ ​ ​ ​ ImGui::CheckboxText("No Sky");​
 ​
​ ​ ​ ​ ​ ImGui::NextColumn(); // You put yourself back in the first

column​
​ ​ ​ ​ }

Live showcase of imgui widgets can be found here.

Imgui also has a method to group different UI widgets
together. Below is the code snippet from grouping
widgets together.

imgui.begin_group()​
imgui.text("First group (buttons):")​
imgui.button("Button A")​

https://magnum.graphics/showcase/imgui/

imgui.button("Button B")​
imgui.end_group()

​
imgui.same_line(spacing=50)

​
imgui.begin_group()​
imgui.text("Second group (text and bullet

texts):")​
imgui.bullet_text("Bullet A")​
imgui.bullet_text("Bullet B")​
imgui.end_group()​
imgui.end()

Links to official documentation:-

●​Grouping UI widgets
●​ Implementation of grouping
●​ Interesting discussion on grid

3. Pyimgui

Pyimgui provides python bindings for the imgui c++
library. All the core implementations remain the
same. Here’s a quick example of columns
implemented under pyimgui:-

​
imgui.begin("Example: Columns -

File list")​
imgui.columns(4, 'filelist')​
imgui.separator()​
imgui.text("ID")​
imgui.next_column()​
imgui.text("File")​

https://pyimgui.readthedocs.io/en/latest/reference/imgui.core.html?highlight=layout#imgui.core.begin_group
https://github.com/ocornut/imgui/blob/master/imgui.cpp
https://github.com/ocornut/imgui/issues/857

imgui.next_column()​
imgui.text("Size")​
imgui.next_column()​
imgui.text("Last Modified")​
imgui.next_column()​
imgui.separator()​
imgui.set_column_offset(1, 40)

Links to the official documentation:-

●​ Implementation/Example for columns
​

4. wxPython:

wxPython also supports various layouts in which
widgets can be placed. Although, we can also opt in
for absolute placements i.e. place the widgets as
per specified coordinates. Here are some classes:-

1.​wx.BoxSizer

2.​wx.StaticBoxSizer

3.​wx.GridSizer

4.​wx.FlexGridSizer

5.​wx.GridBagSizer

​ Below is a code snippet for wx.BoxSizer:

​

https://github.com/swistakm/pyimgui/blob/master/imgui/core.pyx

import wx​
​
​
class Example(wx.Frame):​
​
 def __init__(self, parent, title):​
 super(Example, self).__init__(parent, title=title)​
​
 self.InitUI()​
 self.Centre()​
​
 def InitUI(self):​
​
 panel = wx.Panel(self)​
​
 panel.SetBackgroundColour('#4f5049')​
 vbox = wx.BoxSizer(wx.VERTICAL)​
​
 midPan = wx.Panel(panel)​
 midPan.SetBackgroundColour('#ededed')​
​
 vbox.Add(midPan, wx.ID_ANY, wx.EXPAND | wx.ALL, 20)​
 panel.SetSizer(vbox)​
​
​
def main():​
​
 app = wx.App()​
 ex = Example(None, title='Border')​
 ex.Show()​
 app.MainLoop()​
​
​
if __name__ == '__main__':​
 main()

wxPython also supports nested grids i.e. one can pass

one grid layout to another grid layout which enables the

users to create very complex UI’s

Links to official documentation:-

●​Examples for layouts

https://zetcode.com/wxpython/layout/

Layout Engine In Unity

The layout engine is a part of unity’s UI toolkit. It helps in

placing visual elements based on layout and styling

properties that are loosely based on CSS properties.

The layout engine is based on Yoga Layout which is an

open source layout engine.

Unity’s main UI is GameObject oriented UI which

essentially means that the UI can be dragged and

dropped into the scene and there is no code that

initializes the UI. Below is an example:-

On top of the main UI, unity also supports Immediate

Mode GUI (IMGUI). Which means all the UI is driven

from code. Below is an example:-

https://yogalayout.com/docs

 void OnGUI() {​
 if (GUILayout.Button("Press Me"))​
 Debug.Log("Hello!");​
 }

The layout engine only works with unity’s main UI

components and not the IMGUI. Below are some

behaviours of Unity’s layout engine:-

●​ A container distributes its children vertically.

●​ The position of a container rectangle includes its children's

rectangles. This behaviour can be restricted by other layout

properties.

●​A visual element with text uses the text size in its size

calculations. This behaviour can be restricted by other layout

properties.

These changeable/fluid properties can be modified by a

Style Sheet specific to Unity i.e. USS (Unity Style

Sheets). These sheets are similar to CSS and almost all

properties remain the same with some minor

differences.

The following list provides tips on how to use the

layout engine:

●​ Set the width and height to define the size of an element.

●​ Use the flexGrow property (in USS: flex-grow: <value>;) to

assign a flexible size to an element. The value of the flexGrow

property acts as weighting when the size of an element is

determined by its siblings.

●​ Set the flexDirection property to row (in USS:

flex-direction: row;) to switch to a horizontal layout.

●​ Use relative positioning to offset an element based on its original

layout position.

●​ Set the position property to absolute to place an element

relative to its parent position rectangle. In this case, it does not

affect the layout of its siblings or parents.

These Style Sheets are parsed and applied to a

particular UI element by a custom parser implemented

under Unity’s UI toolkit.

Links to official documentations:-

●​Unity UI

●​Yoga Layout Docs

●​Creating UI in Unity

●​UI Toolkit

●​Layout Engine

●​USS (Unity Style Sheets)

●​ Immediate Mode GUI (IMGUI)

UI/Layout in Unreal Engine

Unreal Engine has a totally different solution to UI and

layout. Like everything else in the engine, UI can be

created from a widget blueprint. After creating and

opening the UI blueprint, this menu opens:-

https://docs.unity3d.com/Manual/com.unity.ugui.html
https://yogalayout.com/docs
https://docs.unity3d.com/Manual/UIToolkits.html
https://docs.unity3d.com/Manual/UIElements.html
https://docs.unity3d.com/Manual/UIE-LayoutEngine.html
https://docs.unity3d.com/Manual/UIE-USS.html
https://docs.unity3d.com/Manual/UIE-IMGUI.html

Here, different sub-widgets are present under the

Common label. These can be dragged and dropped into

the editor.

To actually have some layout in the UI widgets, UE

provides anchors for the sub-widgets. The sub-widgets

then maintain their positions in the widget w.r.t the

anchor. This is how it looks:-

The UI widgets can also be made responsive i.e. react

and adapt to window size. This is done checking the

respective option in the editor. After checking the option,

the UI responds to window resizing.

Links to official docs/tutorials:-

Tutorial to create custom UI

Scale UI w.r.t screen size

https://docs.unrealengine.com/4.26/en-US/InteractiveExperiences/UMG/HowTo/CreatingWidgets/
https://docs.unrealengine.com/4.26/en-US/InteractiveExperiences/UMG/HowTo/ScalingUI/

