Script taller de git /algo2

Version Control System (VCS)
Sistemas que permiten trackear (o mantener un registro de) los cambios realizados en el tiempo.

Git
Git es actualmente la implementacion mas popular de un sistema de control de versiones distribuido.

Git repositories

Un repositorio -0 simplemente repo- de Git contiene la historia de una coleccién de archivos a partir de un directorio
que llamaremos raiz (del repositorio). En el raiz encontraremos el archivo .gitignore, y el .git/config donde mas tarde
veremos algunas opciones de configuracion para el repositorio.

Git init
Para crear repositorios nuevos, este comando crea automaticamente la carpeta .git donde se alojan archivos propios
del sistema git y el archivo .git/config donde se configuraran varias opciones de nuestro repo.

$ mkdir tp-algo2-grupoXX
$ cd tp-algo2-grupoXX
$ git init

Git config --user

Ahora que tenemos nuestro repo listo para usar, es el momento de configurar algunas cuestiones basicas antes de
empezar a versionar los archivos. Si usamos --global, estamos seteando estas opciones para todos los repos de
nuestro filesystem, de lo contrario solo se configuraran para el repo donde corremos el comando.

$ git config --global user.name "John Doe"
$ git config --global user.email johndoe@example.com

.gitignore
En este archivo indicaremos las rutas que deseamos excluir de nuestro repositorio, es decir los archivos o directorios
que no nos interesa trackear.

Por ejemplo si en nuestro .gitignore tenemos una linea con *.log, estaremos indicando que los archivos de extension
.log no van a ser trackeados en nuestro repo.

$ echo "*.log" > .gitignore

Crear repo en GitHub

Para trabajar en un proyecto con mas personas, o bien trabajarlo en mas de una computadora, vamos a crear un
repo en GitHub para usarlo como repo remoto o remote, al cual iremos subiendo y bajando los cambios desde y a
nuestro repo local (el que tenemos en nuestra computadora).

Cuando creamos un repo nuevo en GitHub veremos alli las indicaciones para linkearlo a un repo local en nuestra
maquina.

Generalmente lo mas facil para linkear un repo de GitHub con un repo local es clonarlo, sin embargo para entender
mejor lo que esté sucediendo vamos a explicarlo paso a paso:

1de 8

echo "# holaMundo" >> README.md

git init

git add README.md

git commit -m "first commit"

git remote add origin git@github.com:marin-h/holaMundo.git
git push -u origin master

Git clone

El proceso de copiar un repo Git existente usando las herramientas de Git se denomina clonado (cloning).
Luego de clonar un repo el usuario tiene el repositorio completo, es decir, con su historia (la de cada uno de sus
archivos), en su maquina local.

$ git clone <url>

Git remote
Al clonar un repo, la url de este quedara configurado automaticamente en el repo local como remote de nombre
"origin" en el archivo .git/config:

[remote "origin"]
url = <url que usamos para clonar, puede ser http:// o ssh://>

Working tree, git status

Al clonar un repo, en nuestro filesystem tendremos la version mas reciente de la rama default del repositorio.

Esto quiere decir que nuestro arbol de trabajo -el working tree- correspondera al checkout de ultimo commit de la
rama master, en nuestro caso. En caso de tener cambios hechos o no, hablaremos de un working tree limpio (clean)
o sucio (dirty).

Esto lo podemos corroborar con el comando git status:

$ git status
On branch master
Your branch is up to date with 'origin/master'.

nothing to commit, working tree clean

Luego de agregar un archivo nuevo, corremos el mismo comando:

$ git status
On branch master
Your branch is up to date with 'origin/master'.

Untracked files:
(use "git add <file>...
archivoNuevo

to include in what will be committed)

nothing added to commit but untracked files present (use "git add" to track)

2de8

Estados

El usuario puede modificar los archivos en el working tree ya sea modificando archivos existentes, o bien
creando/borrando archivos.

Un archivo en el working tree de un repo Git puede tener distintos estados. Esos estados son:

New file: aun no fue agregado a ningun commit (git ve todos los archivos nuevos, salvo los del .gitignore)
Staged: agregado para el préximo commit
Modified: archivo que ya habia sido agregado en un commit, ahora con modificaciones locales que aun no
fueron agregadas a un nuevo commit.

e Removed: archivo que ya habia sido agregado en un commit, ahora eliminado.

Ademas es posible diferenciar entre archivos:

e untracked: el archivo no esta siendo trackeado por el repo Git aun.
e ftracked: archivos que fueron modificados/agregados por un commit ya realizado.

File status

Untracked Unmodified

Add the file

Remove the fTile

Tracked

Pikicast

Commit

Un objeto commit representa una version de todos los archivos trackeados en el repositorio en el momento en el cual
el commit se creo.

Luego de hacer cambios en el working tree, el usuario puede agregar sus cambios al repo local para persistirlos, con
estos dos pasos:

e Agregar los cambios seleccionados al area de staging (conocida como index) con el comando git add.
e Hacer un commit en el repo local con los cambios agregados a staging usando el comando git commit.

3de8

$ git add <file>
$ git commit -m <file> "Commit msg"

Commit hash

Un commit es identificable por su hash, el cual es calculado en base al contenido del commit y su metadata
(mensaje, autor, etc).

Este hash nos va a permitir interactuar con commits en la linea de comandos, para verlos, rastrearlos, compararlos,
etc.

Ejemplos de comandos que utilizan el hash de un commit:

$ git show <hash>
$ git diff <hash>...<hash>
$ git checkout <hash>

Ademas, con git blame podemos inspeccionar qué commit origind cada linea de cédigo de un archivo trackeado:

$ git blame <file>

Pull y Push, sincronizando el remoto

Git permite al usuario sincronizar su repo local con otros repositorios (remotes). Usuarios con permisos suficientes
podran enviar nuevas versiones desde su repo local a repositorios remotos mediante la operacion push. También
podran traerse cambios de otros repositorios a su repositorio local utilizando las operaciones fetch y pull.

Para traer cambios del repo remoto:

$ git pull <remote> <rama>

Para subir cambios del repo remoto:

$ git push <remote> <rama>

Stash

Cuando tenemos cambios en nuestro working tree, e intentemos hacer git pull para traernos lo ultimo del repo
remoto, Git no nos permitira pullear. Esto es porque nuestros cambios del working tree serian sobreescritos con la
operacion de merge que implica el pull.

Si se da esta situacion, es posible salvarla de manera elegante usando git stash (para pasar nuestros cambios a la
pila de stash y asi limpiar el working tree), luego git pull, y luego git stash pop. De esa manera volvemos a tener
nuestros cambios en el working tree luego de pullear.

$ git stash
$ git pull <remote> <rama>
$ git stash pop

4de8

Checkout
Usando el comando git checkout podemos movernos entre distintos branches o commits, haciendo que nuestro
working tree refleje el estado de una rama o de un determinado commit.

Ramas

Git permite el uso de ramas (branches), es decir que se puede trabajar sobre diferentes versiones de la coleccién de
archivos. Las ramas permiten trabajar simultdneamente, cambios independientes entre si dentro de nuestros
archivos, para luego combinarlos si se quiere (para esto vamos a ver en un rato rebase, merge, cherry-pick).

El ejemplo mas basico de esto son las ramas master y develop. Con un branching model tipico en master
generalmente vamos a tener el cédigo mas estable, por ej. El que ya esta en produccion disponible para los
usuarios. En develop trabajaremos a diario para desarrollar progresivamente los nuevos features, o mejoras de la
aplicacion que construimos. En algun momento, vamos a querer que los cambios hechos en develop sean replicados
en master, para esto generalmente usaremos git merge.

HEAD, detached HEAD

HEAD es una referencia simbdlica al punto sobre el cual se para el working tree. Al cambiar de rama, HEAD
apuntara al puntero de la rama actual, el cual termina apuntando a un commit. Si se hace checkout a un commit en
particular, HEAD apuntara a este commit directamente (en modo detached HEAD). En ese estado, no se esta
trabajando sobre ninguna rama, por lo que los commits que se hagan no quedaran asociados a ninguna rama (y
seran facilmente perdidos).

git checkout commit

N 2
o—0—0—e O—@—0—0

| lgit checkout 81abc12

4

o] 1/

** Don’t commit your work on a detach head

bit checkout master

Pikicast

Merge
El comando git merge se utiliza para aplicar los cambios de una rama en otra rama. Generalmente se realiza desde
una rama 'padre' para mergear los cambios de alguna de sus ramas 'hijas’.

Merge conflicts

5de8

Conflictos durante el proceso de merge pueden darse si hay modificaciones realizadas en las mismas lineas de
codigo en ambas ramas. En ese caso, Git se ocupara de avisarnos del merge conflict y nos dejara el merge a medio
camino para que manualmente decidamos qué cédigo debe quedar y cual se eliminara.

Por ejemplo, al presentarse un conflicto de merge en un archivo, al inspeccionar el contenido del archivo veremos
algo asi:

<<<<<<< HEAD

my version

the other version

>>>>>>> other branch

Esta es la forma que usa Git para indicar los detalles del conflicto:
- Entre las marcas <<<<<<<y =======, estaran los cambios propios de tu rama actual.
- Entre las marcas =======y >>>>>>> estaran los cambios de la rama que se intenta mergear.
- Convenientemente, luego de las marcas <<<<<<<y >>>>>>> habra 'hints' acerca de a qué commit
pertenece esa parte del conflicto, siendo HEAD por supuesto la referencia a tu revision actual.

Tags
El comando git tag va a permitirnos etiquetar o ponerle un nombre legible a un commit, para luego poder hacer
checkout, diff o show usando ese nombre.

PR, review

Luego de realizar cambios en un branch especifico, es posible abrir un pull request para solicitar a tus colaboradores
o al administrador del repositorio que revisen tus cambios (review) antes de hacer el merge.

A través de distintas reglas también es posible establecer un nimero minimo de reviews y/o approvals de un PR
antes de que sea posible efectuar el merge.

Comandos git

Status

Git diff

Add

Rm

Commit

Log, mencionar: —graph
Checkout

Merge, merge conflicts
Rebase, mencionar: —interactive, squash
Cherry-pick

Stash

Show

Blame

Buenas practicas

e Commits chiquitos

6de 8

e Mensajes de commit cohesivos, que sigan cierta convencion
e Tener claro el branching model

Mas recursos

Git-it - Desktop App for Learning Git
Learn Git Branching

Documentacion

https://www.atlassian.com/es/qit (en espariol)
https://git-scm.com/doc

Windows
Git bash para Windows
https://gitforwindows.org/

OSXy Ubuntu
En OSX'y Ubuntu generalmente git viene instalado por defecto, solo tienen que abrir una terminal y usarlo.
Si no estuviera instalado, pueden seguir los pasos de https://git-scm.com/downloads.

Abrir una terminal en OSX
Usando spotlight (command + espacio) y tipear term:

Q_ terminal

TOP HIT
1 Terminal — Utilities
DEFINITION

B Terminal
OTHER

Terminal for Beginners Series
IMAGES
= Allow Full Disk Access to Terminal...

= Restrictions Passcode in Terminal...

= Enter Encryption Password iTunes...

= Check Bluetooth Battery Levels Ter...

= Text Clippings on Mac for Terminal...

MAIL & MESSAGES Terminal
Seeing error message "Operation n... Version: 2.9.4

"Terminally ill 2-year-old dies days...
Check In for Tomorrow's Flight
Expedia travel confirmation - Apr 7...

Spirit Airlines Flight Confirmation:...

APPLE MUSIC

- Terminal

DOCUMENTS Kind Application
Size 10.1MB

@ OpenTerminalMacTutorial_20190418 Created 8/17/18

Modified 4/5/19

@ ~$enTerminalMacTutorial_2019041...
T Last opened 4/2/19

httns%3A%2F%2Fwww.makeuseof....
Abrir una terminal en Ubuntu/Debian:
- Abrir desde el menu de aplicaciones, tipeando "term"y eligiendo la opcién que aparece.

- Conelshortcut Ctrl - Alt + T

Para chequear desde cualquier terminal si git esté instalado correctamente:

7 de 8

https://github.com/jlord/git-it-electron/releases
https://learngitbranching.js.org/
https://www.atlassian.com/es/git
https://git-scm.com/doc
https://gitforwindows.org/
https://git-scm.com/downloads

$ git --version

Si la salida es la version de git, por ej "git version 2.25.0", todo bien :)
De lo contrario, hay que revisar por qué no se instalé correctamente, reinstalarlo, etc.

8de8

	Script taller de git /algo2

