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1. INTRODUCTION

Over the last few years, mathematical models and computer simulations have seen great
growth in biomedical engineering to examine biological phenomena at a wide range of scales,
ranging from nanoscale devices to large life support systems. One of the important physiological
systems that are simulated is the cardiovascular system, where medicine and fluid mechanics
work together to study blood’s behavior in the human body.

In this project, we attempt to explore the analytical solutions of the phenomenon
mentioned in three parts: simplified versions of the real phenomenon with reduced
dimensionality and complexity, using MATLAB tools to generate pathlines, streamlines, and
track blood cells. The first part deals with defining the velocity profile and steady flow rate in a
converging blood vessel; the second part deals with finding analytical expression for the position
of the stagnation point in the steady flow of opposite impinging streams; the third part deals with
finding the analytical expression for the time-dependent location of the stagnation point in the
unsteady flow of opposite impinging streams.

Part one focuses on the application of a one-dimensional blood flow model in the blood
vessels to study the effects of cardiovascular diseases such as atherosclerosis that causes
narrowing of blood vessels (Atherosclerosis | NHLBI, NIH, n.d.). Blockages by an accumulation
of plaques lead to the narrowing of walls, affecting the blood dynamics, causing many
complications and diseases such as ischemic heart disease (Atherosclerosis | NHLBI, NIH, n.d.).
Studying the effects of fluid flow in a converging blood vessel can help better understand the
effects of cardiovascular diseases such as atherosclerosis on the blood flow mechanics.

Part two involves finding the location of the stagnation point in the steady flow of
opposite impinging streams. This concept is widely applied in microfluidic medical devices with
simple cross-slot shapes where two streams flow at a steady rate in opposite directions of the
impinging streams and form a region where the local velocity is zero (Brimmo & Qasaimeh,
2017 and Jayamohan et al., 2012). Microfluidic has many applications in developing lab-on-chip
devices, where stagnation point offers a better resolution of micro-particles (Brimmo &
Qasaimeh, 2017 and Jayamohan et al., 2012).

Part three is very similar to part two but is for the unsteady flow of streams (Brimmo &
Qasaimeh, 2017). This too holds multiple applications in microfluidic devices that help in the
development of lab-on-chip devices.

Studying the steady and unsteady flows of opposite impinging streams using basic
models discussed in this term paper can offer great insight into understanding the functioning of
microfluidic medical devices that are widely used for the diagnosis of cardiac-related conditions
(Institute of Medicine et al., 2010).



2. MODELS AND ANALYSIS

2.1 Steady Flow in a converging blood vessel (Part I)

2.1.1 Problem Statement

In Part I, we are given a rigid circular blood vessel with a converging geometry where blood is
flowing through it. Information given is that the length of the vessel is 12 cm, and the initial
radius and the final radius are 1.5 cm and 1 cm respectively. A figure is illustrated below (Figure
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Figure 1: Blood vessel

The blood flow that is converging is given with the following equations:
— ax
u=0U ) (— + 1D
v = — by
where U . is the average of the three last two-digit numbers of the group members SJSU ID and x

1s the horizontal coordinate and both a and b are constants.

Last 2 digits of each students ID number:  Rahul: 78; Kayal: 99; Smriti: 12
78+ 99 +12
u 3

(0]
UO = 63cm/s

2.1.1.1 Finding the values of a and b that satisfy the conservation principles
To find the values of a and b, the following assumptions are made:
(a) The flow is steady
(b) The density, p, is constant as there is only one fluid present, the flow is incompressible

(c) 2-D flow (x and y component present)



Firstly to find a and b, we have to find the outlet velocity with the information that has been
given to us
P AOUO =P AlUl
Since the fluid is incompressible, pcan be crossed out. Doing so, we obtain,
AOUO = A1U1
2 2
nr, U 0 = Ty U .
2 2
m(1.5cm) (63 cm/s) = m(1lcm) U1

U1 = 141.75cm/s

By finding the exit velocity, we can substitute that in the first equation, u = U . (aL—x + 1)

to find a.
_ ax
u = Uo —+D

cm cm ,a(12cm)
141750 = 637 (Yt + 1)
141.75cm/s _
63cm/s a+1
~a = 1.25

To find values of b, we will be using the Navier Stokes equation, which is a derivation of the
Conservation of Mass:

ap dpu dpv dpw
at + 0x + dy + 0z =0
Taking into consideration the previously mentioned assumptions, —p—aa;” can be eliminated since
there is no z-component, and % = 0, as it is in steady state. Doing so, we obtain the following:
du Jdv
0x + dy 0

d ax d
LW+ + S (—by) =0
a
U+—b=0
— a
b=U-"

b =202 = 65625

~b=6.56
Therefore, a=1.25 and b = 6.5625.



2.1.1.2 Finding the velocity and flow rate at the exit of the converging section

2.1.1.2.1 Velocity
To find the velocity of the outlet, we will use the equation of the magnitude of the velocity

U1= \/uz+v2

Substituting u and v, we get:

U, = /U, + DT + (- by)’

We know that the flow only moves horizontally, so y = 0, and since this is the exit, x = 12

U, = /1632282 + 1)) + [(~ 6.56)(0)]

U, =/[63(2.25)"
U, = 14175
1 s
Therefore, we get a value of the exit velocity of 141.75 cm/s (as we have previously calculated).
2.1.1.2.2 Flow rate

To find the flow rate, we have to find the inlet velocity as well. Following the same method, we
used to find the outlet velocity, except this time x will be 0 as we are entering the system.

U, = 163222 + 1) + [(- 6.56)(0)]

U, =631’
. — Lm
o U0 = 63 .

To find the mass flow rate we will use the following equation:
pA 0U 0 = pA U
AOU 0 = A U_ (. Fluid is incompressible)

Since we only want to find the mass flow rate for the outlet, we can rewrite the equation and
solve for it:

Q - AOUO

Q = [pi(1.5cm)"] [63-]

N

3

~Q = 445.32-%

N




Therefore, the mass flow rate for the outlet is 445.32 cm’/s

2.1.1.3 Finding the pressure drop across the whole blood vessel
To find the pressure drop, we will have to use Bernoulli’s equation. Before that three
assumptions should be made:

(a) Viscosity is constant; inviscid flow

(b) The density of blood is 1060 kg/m*

(c) There is no y-component in this flow, therefore the height is a constant

1 2 _ 12
P, +5pv, + pgh, = P +—5pv + pgh
~w pgh 0 and p gh1 are constants, the equation transforms to the following

1 z 1
P0+2pvO =P +2pv1

kg
3
m

[(1.4175 ) — (0.632)"]

P — P =-1060

_ — kg
P, P1—854.57 -

ms

P0 — P1 = 854.57Pa

Therefore, the pressure difference is 854.57 Pa.

2.1.1.4 Finding the function that should be used for the streamline

1 _ 1
J Gsezsat 63y X = J o525, & (D

1

656257 63) 0¥

Consider LHS: f
Let,u = 6.5625x + 63 So,du = 6.5625 dx

1 1
f6.5625x+63 dx = IT*

1 1
f6.5625x+63 dx = <oz inlul + C



1
f—6_5625x+63 dx = 65625 oo In16.5625x + 63| + C, )

Consider RHS: fmdy
Let,v = — 6.5625y So,dv = — 6.5625dy
I#&wdy = f% * 6.5_6125 dv
a5 & = - wahlvl + ¢,
J—ar dy = — g inl — 6.5625y] + C, (3)

Substituting equations (2) and (3) into equation (1), we get
ln|6 5625x + 63| + C In| — 6.5625y| + C

-~ 7% 5625
In| — 6.5625y |

6. 5625

65625 In]6.5625x + 63| +

6. 5625
2.2 Steady Flow of opposite impinging streams (Part II)

2.2.1 Problem Statement

In Part two of this report, we have been given a mixing system where the flows of the fluid
inside a stream flow in opposite directions until they both impinge onto one another in a certain
plane (Figure 2).

We are given a few assumptions:

(a) The driving pressure gradient of both the strains present are constants with respect to
time.

(b) The flow is steady

(c) The density, p, is constant as there is only one fluid present, the flow is incompressible

(d) 2-D flow (x and y component present)

The two equations for the flow are given such that:
u = 2.0+ 1.2x
v = 1.0-—-1.2y
The domain of the fluid in interest is

x E(—4,4)andy € (— 4,4)



Impinging plane

w—— With oscillation

- — — No oscillation
Figure 2: Impinging jets (no defined axes)

2.2.1.1 Finding the location of the stagnation point in the flow field
In order to find the stagnation point, we must first use the equation of a velocity field. A
stagnation point is a certain point in the flow field where the velocity of the fluid is zero.
V=u + vj + wk
Since we don't have any z — component in our system, wk = 0
V=u + vj

Using the above equation and canceling out the value of wk as there is no z-component in this
system. We can then substitute the equations given to us in the problem statement into the
velocity field equation.

V= (204 1.2x)i + (1.0 — 1.2y)j
To get both stagnation points, we set the velocity field to be zero. This means that,u =0 and v =
0 as this is a steady flow.

V=0makesu =0andv =0

u = 2.0+ 1.2x v = 1.0 - 1.2y
0 = 2.0+ 1.2x 0=1.0- 1.2y
=20 _ 1
X = Yy =712
x = — 1.667 y = 0.833

Therefore, the location of the stagnation point in the flow field is (-1.667, 0.833)

2.2.2 Finding the function that should be used for the streamline

1 1
f(2+1.2x) dx = [ (1-12y) dy (1



1
2+1.2x

Consider LHS: [ dx

Let,u = 2 + 1.2x So,du = 1.2 dx

1 11
J iz X = IT' 17 du

1 - L
f2+1.2x dx = 1.2 Inlul + C1

1 _ L
J55rdx =55 In|2 + 1.2x] + C, )

Consider RHS: [ 1_1 % dy

Let,v=1— 1.2y So,dv = — 1.2dy

1 1 1
Jt=zdy = I+ dv

1 1
f1_1_2y dy = — 4y Inlv| + C,
1 1
f1_1_2y dy = —57n|1 - 12y + C,(3)

Substituting equations (2) and (3) into equation (1), we get
1 N _
- nl2 + 1.2x| + C1 = — n[1 - 1.2y + C2

1 1 —
- 2 + 1.2x| +—In[1 - 1.2y]=C

2.3 Unsteady flow of opposite impinging streams (Part I1I)

2.3.1 Problem Statement

In Part III, we will be using the same mixing system referenced in Part II (Figure 2) in which we
have been given a mixing system where the flows of the fluid inside a stream flow in opposite
directions until they both impinge onto one another in a certain plane.

The only difference is that now the driving pressure gradients are not constants and that they
both change over time. This will cause the vertical component (y-axis) to oscillate with a
frequency of 1 Hz, which corresponds to the angular velocity w = 2mrad/s.

Assumptions:
(a) The driving pressure gradient of both the strains present is changing with respect to time.



(b) The flow is steady
(c) The density, p, is constant as there is only one fluid present, the flow is incompressible
(d) 2-D flow (x and y component present)

The two equations for the flow are given such that:
u = 2.0+ 1.2x v = 1.0 + 1.5cos(wt) — 1.2y
The domain of the fluid in interest and time is
x € (0,11)m andy € (— 5,6)m
t € (0,2)sec

2.3.1.1 Analytical expression for the time-dependent location of the stagnation point in this
flow field.

As previously mentioned, the stagnation point is where the velocity is zero and since both
equations, u and v are changing in respect to time, we can set them both to zero and we will get
this:

With these concepts, we can then find the integration of each side with the respective component
that they are changing in respect of whether it be time or position. The following will be the
Eulerian equations we have integrated:

X-component:

_ dx
U = "u
dx
2.0 + 1.2x = W
x 4 t
x —
f2+1.2x - fdt
xO tO

[(n(2 + 1.2x) — In(2 + 1. ZxO)] =t-t,

|

L
1.2

e+120 [_ .,
1.2 lln (+12x, | t to
1 (24+1.2%)
e (2+1.2x0] t—t,
e = e
1.2
2412x (7t

2+1.2x0



(t_to)l.z
2+ 1.2x = |e [2+1.2x0]

[[el'z(t_t°)][2+1.2x0”—2

x(t) = 12

y-component:
_ a4y
V=

1.0 + 1.5cos(wt) — 1.2y = %

Ay —
o~ T 12y = 15cos(2mnt) + 1

Using the following integrating factor,

[1.2dt
e

1.2t _
e  (Integration factor)

Multiplying the integrating factor on both sides, we obtain the following:

t

el'Zt[%] + el'Zt[l. 2y] = el'Zt[l. 5 cos(2mt) + el'2 [1]]

d 12t, 12t 1.2t
—— e ) = e +e [l5cos(2nt)]

y t
[d@ye™) = [[e"™ + &"™[1.5 cos(2nt)]|at
yO tO

y t t
fd(yel'Zt) = fel'tht + fel'2t[1.5 cos(2mt)]dt
yO tO tO

t
1.2
[e ‘ [1.5cos(2mt)] can be solved the following way:

t
0

e [15sin@mt)] [ [1.5 sin(2mt)] e 2 (1.2)

1.2t
= [ e " [1.5 cos(2mt)]dt = o 2
_ e T[Ssin@uy) _ —[1Scos@ute (12) [ —1.5cos(2mt)le"*'(1.2)°
21 4_1-[2 41'[2

e *'[15sin(2mt)] + 1.5cos(2mt)e > (1.2)
2m 41'[2




e “[15sin(2nt)] |, [L5cos(2m)e (1.2)
o 2
2m 4m

2
1+ (1.22)
4m

Plugging back the integral into the equation, we obtain the following:

y t t
[dye'™ = [e"*dt + [ e *[1.5cos(2mt)]dt
t t

yO 0 0
e ¥[1.5sin(2mt)] | [1.5cos(2mt)e > (1.2)
1.2t7Y ;= | 2m ' an’
[y € ] — 12 t 1.2)°
Y, 2 |, 14-02)
0 41
t
o
1.5sin(2nt) | 15cos(2mt)(1.2) 15sin(2nt) ~ 1.5cos(2nt )(1.2)
2m T P 21 v 4
y - y — 2 - >
0 10yt 140yt
4t 41t

y=y,* [0.23 sin(6.28t) + 0.04 cos(6.28t)] — [0.23 sin(6.28t0) + 0.04 cos(6.28t0)

]
y=y,t 0.23[sin(6.28t) — Sin(6.28t0)] + 0.04[cos(6.28t) — cos(6. 28t0)]

Next, in order to find the level set function of both the x and y components of the streamline, we
shall make t, = 0. We will use the equations that we have formulated for F in terms of x and y

by getting rid of the t component in the said equations.

For the x component, we just have to replace t with the function of x in the pathline y(t):
L, 2+120)

12 (2+1.2x) =t-t
When t, = 0,
1 g, @l
1.2 (2+1.2x) o
_ 5, (2+12%)
t=+1n (2+12x)

t=In((2+1.2x)/(2+1.2x,))"



Now that we have found what t is, we can substitute the value of t into the y component y(t) and
also making t, = 0.

When t0 = 0,
y =y, t 0.23 sin(6.28t) — 0.23sin(6.28 * 0) + 0.04cos(6.28t)—
0.04co0s(6.28* 0))

Substituting t = In((2+1.2x)/(2+1.2x,))™ ,

— . 2+1.2x 5/6 241.2x 5/6
y =y,t [0. 23 Sm[6. 28(lnT2xO )” + [0. 04 cosn[6. 28(lnT.2xO )H- 0.04
Finally,

_ . 2+1.2x °/® 2+1.2x >/
F(x,y) = y,— ¥yt [0.23 sm[6.28(lnz+1—_2x0 +10.04 cos 6.28(lnT.2x0 )||— 0.04

3. RESULTS

(Please note that x-axis for each graph represents the x-position and y-axis for each graph
represents the y-position of the flow.)

3.1 Part1
15 Vector Plot and Streamline for Part 1

'Q,K'fa%:{%;'%%m'*h
Q’ ~ =3 — - u — = < :__ &

S =3 = SSSS==
(= %%ﬁ 2 = == == % == ==
05— S %= —2—% g —e——= =
Ea— S %—= -3 —= —% 3 g ==

s == = =3 =

B2 =% o8 T8 —mee=—u-—a 3% —o —— :
> 0 = T— s ——= —= —=5——2 -
= — g =5 —= — __%—

— —_— — — — >
= —= — — — =— ___-,eéL

= s ——— :

= ——— i S "
05 2 —% ——S-—= 0 —a——n

= e T —

= = — . —

- i p—— J— p— 2 S

2: £ = o gt et =
e = = = = = =

= = = = = = =

z =3 = ’Ié = ?é —

7 I;,- = e s |-/{ —

-1.5

o
%]
n
x
o
g
o
-
g%



3.2 Part 11

Vector Plot and Streamline for Part 2

3.3 Part 111
Vector Plot, Streamlines, and Pathlines for 5 particles with 4 time particles for Part 3

Vector Plot and Streamline for Part 3
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4. DISCUSSION
4.1 Interpretation of the results in light of the example applications identified in the
introduction

As Part I and Part II are similar problems with different velocity fields from steady-state
flows, the vector field of Part I needs to represent the flow inside a converging blood vessel. This
is because the velocity in the positive x-direction must increase with increasing x-value increases
as they are linearly related with a positive slope. The magnitude of velocity in the y-direction
must decrease with decreasing distance from the y-value of 0 as they are linearly related with a
negative slope.

The vector field of Part II is supposed to be similar to the vector field of Part I in terms of
how the direction of the velocity vector changes based on the change in both x and y-direction.
In this case, the x-value and velocity in the x-direction are directly proportional and linearly
related with a positive slope just like in Part I. The y-value and velocity in the y-direction are
directly proportional and linearly related with a negative slope just like in Part I. Even though
this kind of flow is caused by opposite impinging jets rather than a converging blood vessel, the
streamlines of Part I and Part II are to follow the displayed velocities of every represented
position of the vector field in a similar way with different magnitudes of position and velocity.

The vector field of Part III was supposed to be represented in a way that is similar to how
the vector field of Part II was based on how the velocities of the fluid are to change in position.
The convective accelerations between all positions of the fluid for Part II and Part III are to be
exactly the same if not for what causes local acceleration in the y-direction. As the velocities in
the y-direction are to change with respect to time in a way that represents simple harmonic
motion in Part III, the represented streamlines in Part III are to be represented in a sinusoidal
manner due to time being inside a cosine function of the y-velocity. The pathlines represented in
this vector field display the trajectory of how 5 particles move with respect to time in a duration
of 2 seconds.

4.2 Comparison between part II and II1

What makes the flow in Part 11 steady is the driving pressure gradients of both streams to
be constant. What makes the flow in Part Il unsteady is the driving pressure gradients of both
streams to change over time. Even though velocities change with respect to the position in both
parts, the velocities for each particular position of the fluid remain constant for Part I while the
velocities for each particular position of the fluid change over time for Part III. For Part II, the
stagnation point is constant. For Part III, the stagnation point changes over time.

Regarding how the vector plots are displayed, Part II only shows streamlines of the
vector field. Streamlines of Part Il show a group of curves that are tangent to the displayed
velocities of every represented position of the vector field with x-values ranging from -4 to 4 and
y-values ranging from - 4 to 4. Part Il shows pathlines of 5 different particles’ trajectories as
well as streamlines. Part II did not need pathlines as the streamlines are to remain constant. Part



III needed pathlines as the velocity and position of the particles needed to change over time and
that the streamlines needed to look different over time.

4.3 Comparison between streamlines and pathlines in part I11

The streamlines in Part III show a group of curves that are tangent to the displayed
velocities of every represented position of the vector field with x-values ranging from 0 to 11 and
y-values ranging from - 5 to 6. As the difference between each adjacent represented position of
the vector field is 0.25 in both x and y directions,

The pathlines of Part III show trajectories that certain particles follow as time changes.
The position of each particle based on certain time durations would show on the vector field to
make up the pathline. The graphs showed trajectories that particles from certain initial positions
are to follow. As the initial x-positions of all 5 particles equal zero, the initial y-positions of all 5
particles are all the integers that range from - 1 to 3. All 5 of the different trajectories displayed
on the vector field show the position of the particles when the time is equal to 0 seconds, 0.5
seconds, 1 second, 1.5 seconds, and 2 seconds.

4.4 Limitations of the models and analysis included in this project

Even though we were able to figure out the velocities of certain points in both x and
y-direction in all 3 parts, we were only able to use only certain x and y positions instead of every
single x and y position from negative infinity to positive infinity. Despite making a video in Part
III that helps determine how the streamlines and positions of certain particles change with
respect to time, the video was only able to track certain particles from certain positions rather
than every single particle of the entire fluid. However, we were not able to make the other video
and the video we made was not what we wanted to see. For the first video, we are expecting the
vector plot to change over time as the direction of the arrows represented in the graph is to
change with respect to time. However, everything in the graph did not change and a blurry
square took up the graph’s space instead. For the second video, we are expecting the vector plot,
streamlines, pathlines, and position of all 5 particles to change over time as the direction of the
arrows represented in the graph are to change with respect to time. However, the second video
turned out not very different from the first video.

5. CONCLUSION

In this term paper, we studied different flow patterns of blood using basic analytical
modeling for three different cases: steady flow in a converging blood vessel, steady flow of
opposite impinging streams, and unsteady flow of opposite impinging streams. These analytical
models were then used to visualize using MATLAB tools. The two-dimensional models
discussed in this term paper helped us better understand some of the basic concepts of fluid
mechanics discussed in this class, and learn about their applications in the field of biomedical
engineering.
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9. APPENDIX (MATLAB Code)
9.1 Code for Part 1

% define constants

L =12; % length of blood vessel (given)

RO = 1.5; % radius of the inlet (given)

R1 =1; % radius of the outlet (given)

a=1.25; % constant a (calculated)

b =6.5625; % constant b (calculated)

U0 = 63; % velocity of inlet (calculated)

% creates a meshgrid of this x-interval [0,12] and this y-interval [-1.5,1.5]
[x,y] = meshgrid(0:1:12, -1.5:0.05:1.5); % x = length, y = radius

% given equations of the flow

u=U0*((a*x)/L + 1);

v =-b*y;

% plot a vector plot and streamlines

quiver(x,y,u,v); % vector plot

[startx, starty] = meshgrid(0,-1.5:0.155:1.5); % meshgrid helps set the number of streamlines,
%need to keep changing interval size until desired 20 streams are found
streamline(x,y,u,v,startx,starty); % displays all 20 streamlines

% plot the graph

xlabel('x") % labels the x-axis of the graph x-position of the flow
ylabel('y") % labels the y-axis of the graph y-position of the flow
title("Vector Plot and Streamline for Part 1') % title of the graph

axis([0 12 -1.5 1.5]) % sets the range of x-axis from 0 to 12 and the y-axis from -1.5 to 1.5

9.2 Code for Part 11



[x,y]=meshgrid(-4:0.5:4, -4:0.5:4) ; % creates a meshgrid of this x-interval [-4,4] and this
%y-interval [-4,4]

u=2+1.2%*x; % function of velocity in x-direction

v=1-1.2%y; % function of velocity in y-direction

quiver(x,y,u,v) ; % displays the vector plot

daspect([1 1 1]);

hold on

xlabel('x") % labels the x-axis of the graph x-position of the flow

ylabel('y") % labels the y-axis of the graph y-position of the flow

title('Vector Plot and Streamline for Part 2') % gives the graph a title

F = (1/1.2).*log(abs(2 + 1.2.*x)) + (1/1.2).*log(abs(1 - 1.2.*y)); % defining function that should
%be contoured

contour(x,y,F,20, 'LineColor','b") % contouring appropriately to make 20 streamlines

axis([-4 4 -4 4]) % sets the range of x-axis from -4 to 4 and the y-axis from -4 to 4.

9.3 Code for Part 111

tstag = [0:0.1:2]; % shows values of time for function of y-position for stagnation point
ystag = (1 - 1.5%cos(2*pi.*tstag))./1.2; % gives a function of y-position for stagnation point with
%respect to time
[x,y] = meshgrid(0:0.5:11, -5:0.5:6); % creates a meshgrid of this x-interval [0,11] and this
%y-interval [-5,6]
x0 = 0; % x-position is 0 for all particles
t0 = 0; % time is O for all particles
yi0 = -1; % y-position is -1 for 1st particle
yil = 0; % y-position is 0 for 2nd particle
yi2 = 1; % y-position is 1 for 3rd particle
yi3 = 2; % y-position is 2 for 4th particle
yi4 = 3; % y-position is 3 for 5th particle
for t = [0:0.5:1.5] % talking about particles at these time intervals: time = Os, time = 0.5s, time =
%1s, and time = 1.5s
xt = ((2 + 1.2.*x0)*exp((t-t0).”1.2) - 2)/1.2 % function of x-position with respect to time for
%all 5 particles
a = (1.5/(2*pi))*sin(2*pi.*t);
a0 = (1.5/(2*pi))*sin(2*pi.*t0);
b = (1.5%1.2/(4*pi*pi))*cos(2*pi.*t);
b0 = (1.5*1.2/(4*pi*pi))*cos(2*pi.*t0);
c=at+b
c0=2a0+b0
d=(1+(1.2*1.2/(4*pi*p1)))."-1;
u=2+1.2.*x; % function of velocity in x-direction



v =1+ 1.5.*cos(2.%pi.*t) - 1.2*y; % function of velocity in y-direction
XC=(1/1.2).*(log((2 + 1.2.¥x)/(2+1.2.*¥x0)));
AC = (1.5/(2*p1))*sin(2*pi.*XC);
BC = (1.5*%1.2/(4*pi*pi))*cos(2*pi.*XC);
C1 = 0.23*log(abs(6.28*(sin(2+1.2*x)/(2+1.2*x0)).”(5/6)))
C2 = 0.04*log(abs(6.28*(cos(2+1.2*x)/(2+1.2*x0)).~(5/6)))
quiver(x,y,u,v); % displays the vector plot
hold on
plot(xt, yi0 + d.*(c - c0), 'ok', 'markerface’, k') % plot of 1st particle’s pathline based on
%parametric equations
FO=yi0+C1+C2-y-0.04 ;% defining function that should be contoured based on the 1st
Y%oparticle
contour(x,y,F0,20, 'LineColor','b') % contouring appropriately to make 20 streamlines based
%the 1st particle
plot(xt, yil + d.*(c - ¢0), 'ok', 'markerface', 'k') % plot of 2nd particle’s pathline based on
%parametric equations
F1=yil +Cl +C2-y-0.04; 9% defining function that should be contoured based on the
%?2nd particle
contour(x,y,F1,20, 'LineColor','r') % contouring appropriately to make 20 streamlines based
%the 2nd particle
plot(xt, yi2 + d.*(c - ¢0), 'ok', 'markerface', 'k") % plot of 3rd particle’s pathline based on
%parametric equations
F2=yi2+Cl1+C2-y-0.04; % defining function that should be contoured based on the 3rd
Y%particle
contour(x,y,F2,20, 'LineColor','g") % contouring appropriately to make 20 streamlines based
%the 3rd particle
plot(xt, yi3 + d.*(c - c0), 'ok', 'markerface', 'k') % plot of 4th particle’s pathline based on
%parametric equations
F3 =yi3 + C1 + C2 -y -0.04 ; % defining function that should be contoured based on the 4th
%particle
contour(x,y,F3,20, 'LineColor','y") % contouring appropriately to make 20 streamlines based
%the 4th particle
plot(xt, yi4 + d.*(c - ¢0), 'ok', 'markerface', 'k') % plot of 5th particle’s pathline based on
%parametric equations
F4=yi4+Cl1+C2-y-0.04; % defining function that should be contoured based on the 5th
Y%particle
contour(x,y,F4,20, 'LineColor','m") % contouring appropriately to make 20 streamlines based
%the Sth particle
axis([0 11 -5 6]) % sets the range of x-axis from 0 to 11 and the y-axis from -5 to 6.
end



VIDEO = VideoWriter('1stpart31IIfinal.avi'); % names video file
open(VIDEO); % opens video
forn=1:0.01:2
t=n- 1; % for certain time frames
v =1+ 1.5*%cos(2*pi.*t) - 1.2*y; % velocity in the y direction
surf(x,F0,v); % creates appropriate surface
axis(([0 11 -5 6 -1 1])); % sets the range of x-axis from 0 to 11 and the y-axis from -5 to 6.
CORRECTFRAME = getframe;
writeVideo(VIDEO,CORRECTFRAME);
n=n+0.01;
end
close(VIDEO); % closes video
VIDEO = VideoWriter('2ndpart31Ifinal.avi'); % names video file
open(VIDEO); % opens video
forn=1:0.01:2
t=n-1 % for certain time frames
v =1+ 1.5%cos(2*pi.*t) - 1.2*y; % velocity in the y direction
surf(x,y,v);% creates appropriate surface
axis(([0 11 -5 6 -1 1])); % sets the range of x-axis from 0 to 11 and the y-axis from -5 to 6.
CORRECTFRAME = getframe;
writeVideo(VIDEO,CORRECTFRAME);
n=n+ 0.01;
end
close(VIDEO); % closes video
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