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1.​ INTRODUCTION  
Over the last few years, mathematical models and computer simulations have seen great 

growth in biomedical engineering to examine biological phenomena at a wide range of scales, 
ranging from nanoscale devices to large life support systems. One of the important physiological 
systems that are simulated is the cardiovascular system, where medicine and fluid mechanics 
work together to study blood’s behavior in the human body.  

 
In this project, we attempt to explore the analytical solutions of the phenomenon 

mentioned in three parts: simplified versions of the real phenomenon with reduced 
dimensionality and complexity, using MATLAB tools to generate pathlines, streamlines, and 
track blood cells. The first part deals with defining the velocity profile and steady flow rate in a 
converging blood vessel; the second part deals with finding analytical expression for the position 
of the stagnation point in the steady flow of opposite impinging streams; the third part deals with 
finding the analytical expression for the time-dependent location of the stagnation point in the 
unsteady flow of opposite impinging streams.  

 
Part one focuses on the application of a one-dimensional blood flow model in the blood 

vessels to study the effects of cardiovascular diseases such as atherosclerosis that causes 
narrowing of blood vessels (Atherosclerosis | NHLBI, NIH, n.d.). Blockages by an accumulation 
of plaques lead to the narrowing of walls, affecting the blood dynamics, causing many 
complications and diseases such as ischemic heart disease (Atherosclerosis | NHLBI, NIH, n.d.). 
Studying the effects of fluid flow in a converging blood vessel can help better understand the 
effects of cardiovascular diseases such as atherosclerosis on the blood flow mechanics.  

 
Part two involves finding the location of the stagnation point in the steady flow of 

opposite impinging streams. This concept is widely applied in microfluidic medical devices with 
simple cross-slot shapes where two streams flow at a steady rate in opposite directions of the 
impinging streams and form a region where the local velocity is zero (Brimmo & Qasaimeh, 
2017 and Jayamohan et al., 2012). Microfluidic has many applications in developing lab-on-chip 
devices, where stagnation point offers a better resolution of micro-particles (Brimmo & 
Qasaimeh, 2017 and Jayamohan et al., 2012).  

 
Part three is very similar to part two but is for the unsteady flow of streams (Brimmo & 

Qasaimeh, 2017). This too holds multiple applications in microfluidic devices that help in the 
development of lab-on-chip devices.  

 
Studying the steady and unsteady flows of opposite impinging streams using basic 

models discussed in this term paper can offer great insight into understanding the functioning of 
microfluidic medical devices that are widely used for the diagnosis of cardiac-related conditions 
(Institute of Medicine et al., 2010).  



2.​ MODELS AND ANALYSIS 
2.1 Steady Flow in a converging blood vessel (Part I) 
2.1.1 Problem Statement 
In Part I, we are given a rigid circular blood vessel with a converging geometry where blood is 
flowing through it. Information given is that the length of the vessel is 12 cm, and the initial 
radius and the final radius are 1.5 cm and 1 cm respectively. A figure is illustrated below (Figure 
1).  

 
Figure 1: Blood vessel 

 
The blood flow that is converging is given with the following equations: 

 𝑢 = 𝑈
𝑜
 ( 𝑎𝑥

𝐿  +  1) 

 𝑣 =  − 𝑏𝑦
where  is the average of the three last two-digit numbers of the group members SJSU ID and  𝑈

𝑜
𝑥

is the horizontal coordinate and both  and  are constants.  𝑎 𝑏
 
Last 2 digits of each students ID number:      Rahul:​78; ​ Kayal:​99; ​ Smriti:​12 

 𝑈
𝑜
 =  78 + 99 +12

3

 𝑈
𝑜
 =  63 𝑐𝑚/𝑠

 
2.1.1.1 Finding the values of  and  that satisfy the conservation principles 𝑎 𝑏
To find the values of a and b, the following assumptions are made: 

(a)​ The flow is steady 
(b)​The density, , is constant as there is only one fluid present, the flow is incompressible ρ
(c)​ 2-D flow (  and  component present) 𝑥 𝑦



Firstly to find a and b, we have to find the outlet velocity with the information that has been 
given to us 

 ρ 𝐴
0
𝑈

0
 =  ρ 𝐴

1
𝑈

1
Since the fluid is incompressible, can be crossed out. Doing so, we obtain, ρ

 𝐴
0
𝑈

0
 =  𝐴

1
𝑈

1

 π𝑟
0

2𝑈
0

= π𝑟
1

2𝑈
1
 

 π (1. 5 𝑐𝑚)2 (63 𝑐𝑚/𝑠) =  π (1 𝑐𝑚)2 𝑈
1

 ∴ 𝑈
1

=  141. 75 𝑐𝑚/𝑠

By finding the exit velocity, we can substitute that in the first equation, 𝑢 = 𝑈
𝑜
 ( 𝑎𝑥

𝐿  +  1) 
to find a.  

 𝑢 =  𝑈
0
 ( 𝑎𝑥

𝐿 + 1)

141.75  𝑐𝑚
𝑠 =  63 𝑐𝑚

𝑠  ( 𝑎 (12𝑐𝑚 )
(12𝑐𝑚) + 1)

 141.75 𝑐𝑚/𝑠
63 𝑐𝑚/𝑠 = 𝑎 + 1 

 ∴ 𝑎 =  1. 25
 
To find values of b, we will be using the Navier Stokes equation, which is a derivation of the 
Conservation of Mass: 

 ∂ρ
∂𝑡 + ∂ρ𝑢

∂𝑥 + ∂ρ𝑣
∂𝑦 + ∂ρ𝑤

∂𝑧  =  0

Taking into consideration the previously mentioned assumptions, can be eliminated since ∂ρ𝑤
∂𝑧

there is no z-component, and , as it is in steady state. Doing so, we obtain the following: ∂ρ
∂𝑡  = 0

 ∂𝑢
∂𝑥 + ∂𝑣

∂𝑦 = 0

 ∂
∂𝑥 (𝑈

0
𝑎𝑥
𝐿 + 1) +  ∂

∂𝑦 (− 𝑏𝑦) =  0

 𝑈
0

𝑎
𝐿 − 𝑏 = 0

 𝑏 =  𝑈
0

𝑎
𝐿

 𝑏 = 63(1.25)
12 = 6. 5625

 ∴ 𝑏 ≅ 6. 56
Therefore, a = 1.25 and b = 6.5625. 
 



2.1.1.2 Finding the velocity and flow rate at the exit of the converging section 
 
2.1.1.2.1 Velocity  
To find the velocity of the outlet, we will use the equation of the magnitude of the velocity 

 𝑈
1

=  𝑢2 + 𝑣2

Substituting u and v, we get: 

 𝑈
1

= [𝑈
0
( 𝑎𝑥

𝐿 + 1)]2 + (− 𝑏𝑦)2

 
We know that the flow only moves horizontally, so y = 0, and since this is the exit, x = 12 

 𝑈
1

= [63( 1.25(12)
(12) + 1)]2 + (− 6. 56)(0)[ ]2

 𝑈
1

= [63(2. 25)]2

 ∴ 𝑈
1

= 141. 75 𝑐𝑚
𝑠

Therefore, we get a value of the exit velocity of 141.75 cm/s (as we have previously calculated). 
 
2.1.1.2.2 Flow rate 
To find the flow rate, we have to find the inlet velocity as well. Following the same method, we 
used to find the outlet velocity, except this time x will be 0 as we are entering the system.  

 𝑈
0

= [63( 1.25(0)
(12) + 1)]2 + (− 6. 56)(0)[ ]2

 𝑈
0

= [63(1)]2

 ∴ 𝑈
0

= 63 𝑐𝑚
𝑠

 
To find the mass flow rate we will use the following equation: 

 ρ𝐴
0
𝑈

0
 =  ρ𝐴

1
𝑈

1
                ​ (∵ Fluid is incompressible) 𝐴

0
𝑈

0
 =  𝐴

1
𝑈

1
 
Since we only want to find the mass flow rate for the outlet, we can rewrite the equation and 
solve for it: 

 𝑄 =  𝐴
0
𝑈

0

 𝑄 =  [𝑝𝑖 (1. 5𝑐𝑚)2] [63 𝑐𝑚
𝑠 ]

 ∴ 𝑄 =  445. 32 𝑐𝑚3

𝑠

 



Therefore, the mass flow rate for the outlet is 445.32 cm3/s 
 
2.1.1.3 Finding the pressure drop across the whole blood vessel  
To find the pressure drop, we will have to use Bernoulli’s equation. Before that three 
assumptions should be made: 

(a)​ Viscosity is constant; inviscid flow 
(b)​The density of blood is 1060 kg/m3 

(c)​ There is no y-component in this flow, therefore the height is a constant 
 

 𝑃
0

+ 1
2 ρ𝑣

0
2 + ρ𝑔ℎ

0
 =  𝑃

1
+ 1

2 ρ𝑣
1

2 + ρ𝑔ℎ
1

 ∵ ρ𝑔ℎ
0
 𝑎𝑛𝑑 ρ𝑔ℎ

1
 𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠,  𝑡ℎ𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔

 𝑃
0

+ 1
2 ρ𝑣

0
2 =  𝑃

1
+ 1

2 ρ𝑣
1

2

 𝑃
0

−  𝑃
1

= 1
2 ρ(𝑣

1
2 − 𝑣

0
2)

 𝑃
0

−  𝑃
1

= 1
2 ρ(𝑢

1
2 − 𝑢

0
2)

 𝑃
0

−  𝑃
1

= 1
2  1060 𝑘𝑔

𝑚3  [(1. 4175 𝑚
𝑠 )2 − (0. 63 𝑚

𝑠 )2]

 𝑃
0

−  𝑃
1

= 854. 57 𝑘𝑔

𝑚𝑠2

Pa  𝑃
0

−  𝑃
1

= 854. 57

 
Therefore, the pressure difference is 854.57 Pa. 
 
2.1.1.4 Finding the function that should be used for the streamline 

​ (1) ∫ 1
(6.5625𝑥 + 63) 𝑑𝑥 = ∫ 1

−6.5625𝑦 𝑑𝑦

Consider LHS:   ∫ 1
6.5625𝑥 + 63) 𝑑𝑥

Let,   So,  𝑢 = 6. 5625𝑥 +  63 𝑑𝑢 = 6. 5625 𝑑𝑥

  ∫ 1
6.5625𝑥 + 63  𝑑𝑥 =  ∫ 1

𝑢 * 1
6.5625 𝑑𝑢

  ∫ 1
6.5625𝑥 + 63  𝑑𝑥 =  1

6.5625 𝑙𝑛 |𝑢| +  𝐶
1



​ (2) ∫ 1
6.5625𝑥 + 63  𝑑𝑥 = 1

6.5625 𝑙𝑛 |6. 5625𝑥 +  63| +  𝐶
1

Consider RHS:   ∫ 1
−6.5625𝑦 𝑑𝑦

Let,   So,  𝑣 =  − 6. 5625𝑦 𝑑𝑣 =  − 6. 5625 𝑑𝑦

  ∫ 1
−6.5625𝑦 𝑑𝑦 =  ∫ 1

𝑣 * −1
6.5625 𝑑𝑣

  ∫ 1
−6.5625𝑦  𝑑𝑦 =  −  1

6.5625 𝑙𝑛 |𝑣| +  𝐶
2

 ​ (3) ∫ 1
−6.5625  𝑑𝑦 =  − 1

6.5625 𝑙𝑛 | − 6. 5625𝑦| +  𝐶
2

Substituting equations (2) and (3) into equation (1), we get 

 1
6.5625 𝑙𝑛 |6. 5625𝑥 +  63| +  𝐶

1
 =  − 1

6.5625 𝑙𝑛 | − 6. 5625𝑦| +  𝐶
2

 1
6.5625 𝑙𝑛 |6. 5625𝑥 +  63| +  1

6.5625 𝑙𝑛 | − 6. 5625𝑦 | = 𝐶 
 
2.2 Steady Flow of opposite impinging streams (Part II) 
2.2.1 Problem Statement 
In Part two of this report, we have been given a mixing system where the flows of the fluid 
inside a stream flow in opposite directions until they both impinge onto one another in a certain 
plane (Figure 2).  
 
We are given a few assumptions: 

(a)​ The driving pressure gradient of both the strains present are constants with respect to 
time. 

(b)​The flow is steady 
(c)​ The density, , is constant as there is only one fluid present, the flow is incompressible ρ
(d)​2-D flow (  and  component present) 𝑥 𝑦

 
The two equations for the flow are given such that: 

 𝑢 =  2. 0 + 1. 2𝑥
 𝑣 =  1. 0 − 1. 2𝑦

The domain of the fluid in interest is  
 and  𝑥 ∈ (− 4, 4) 𝑦 ∈ (− 4, 4)



Figure 2: Impinging jets (no defined axes) 
 
2.2.1.1 Finding the location of the stagnation point in the flow field 
In order to find the stagnation point, we must first use the equation of a velocity field. A 
stagnation point is a certain point in the flow field where the velocity of the fluid is zero. 

 𝑉 =  𝑢𝑖 +  𝑣𝑗 +  𝑤𝑘
 𝑆𝑖𝑛𝑐𝑒 𝑤𝑒 𝑑𝑜𝑛'𝑡 ℎ𝑎𝑣𝑒 𝑎𝑛𝑦 𝑧 − 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑖𝑛 𝑜𝑢𝑟 𝑠𝑦𝑠𝑡𝑒𝑚,  𝑤𝑘 = 0

 𝑉 =  𝑢𝑖 +  𝑣𝑗
 
Using the above equation and canceling out the value of wk as there is no z-component in this 
system. We can then substitute the equations given to us in the problem statement into the 
velocity field equation. 

 𝑉 =  (2. 0 + 1. 2𝑥) 𝑖
^
 + (1. 0 − 1. 2𝑦) 𝑗

^

To get both stagnation points, we set the velocity field to be zero. This means that, u = 0 and v = 
0 as this is a steady flow. 

 𝑉 = 0 𝑚𝑎𝑘𝑒𝑠 𝑢 = 0 𝑎𝑛𝑑 𝑣 = 0
 ​ ​ ​ ​  𝑢 =  2. 0 + 1. 2𝑥 𝑣 =  1. 0 − 1. 2𝑦

                          ​ ​ ​ ​       0 =  2. 0 + 1. 2𝑥 0 = 1. 0 − 1. 2𝑦
                                                                               𝑥 =  −2.0

1.2 𝑦 = 1
1.2

      ​​ ​ ​       𝑥 =  − 1. 667 𝑦 = 0. 833
 
Therefore, the location of the stagnation point in the flow field is (-1.667, 0.833) 
 
2.2.2 Finding the function that should be used for the streamline 

​ (1) ∫ 1
(2+1.2𝑥)  𝑑𝑥 = ∫ 1

(1−1.2𝑦)  𝑑𝑦



Consider LHS:   ∫ 1
2+1.2𝑥 𝑑𝑥

Let,   So,  𝑢 = 2 + 1. 2𝑥 𝑑𝑢 = 1. 2 𝑑𝑥

  ∫ 1
2+1.2𝑥 𝑑𝑥 =  ∫ 1

𝑢  .  1
1.2 𝑑𝑢

  ∫ 1
2+1.2𝑥 𝑑𝑥 =  1

1.2  𝑙𝑛 |𝑢| +  𝐶
1

​ (2) ∫ 1
2+1.2𝑥 𝑑𝑥 = 1

1.2  𝑙𝑛 |2 + 1. 2𝑥| +  𝐶
1

Consider RHS:   ∫ 1
1−1.2𝑦 𝑑𝑦

Let,   So,  𝑣 = 1 − 1. 2𝑦 𝑑𝑣 =  − 1. 2 𝑑𝑦

  ∫ 1
1−1.2𝑦  𝑑𝑦 =  ∫ 1

𝑣  .  −1
1.2  𝑑𝑣

  ∫ 1
1−1.2𝑦  𝑑𝑦 =  −  1

1.2  𝑙𝑛 |𝑣| +  𝐶
2

 ​(3) ∫ 1
1−1.2𝑦  𝑑𝑦 =  − 1

1.2  𝑙𝑛 |1 − 1. 2𝑦| +  𝐶
2

Substituting equations (2) and (3) into equation (1), we get 

 1
1.2 𝑙𝑛|2 + 1. 2𝑥| +  𝐶

1
 =  − 1

1.2  𝑙𝑛 |1 − 1. 2𝑦| +  𝐶
2

= C 1
1.2 𝑙𝑛|2 + 1. 2𝑥| + 1

1.2  𝑙𝑛 |1 − 1. 2𝑦|
 
2.3 Unsteady flow of opposite impinging streams (Part III) 
2.3.1 Problem Statement 
In Part III, we will be using the same mixing system referenced in Part II (Figure 2) in which we 
have been given a mixing system where the flows of the fluid inside a stream flow in opposite 
directions until they both impinge onto one another in a certain plane.  
 
The only difference is that now the driving pressure gradients are not constants and that they 
both change over time. This will cause the vertical component (y-axis) to oscillate with a 
frequency of 1 Hz, which corresponds to the angular velocity rad/s.  ω =  2π
 
Assumptions: 

(a)​ The driving pressure gradient of both the strains present is changing with respect to time. 



(b)​The flow is steady 
(c)​ The density, , is constant as there is only one fluid present, the flow is incompressible ρ
(d)​2-D flow (  and  component present) 𝑥 𝑦

 
The two equations for the flow are given such that: 

​ ​  𝑢 =  2. 0 + 1. 2𝑥 𝑣 =  1. 0 + 1. 5 𝑐𝑜𝑠(ω𝑡) − 1. 2𝑦
The domain of the fluid in interest and time is  

m  and m  𝑥 ∈ (0, 11) 𝑦 ∈ (− 5, 6)
sec 𝑡 ∈ (0, 2)

 
2.3.1.1 Analytical expression for the time-dependent location of the stagnation point in this 
flow field. 
As previously mentioned, the stagnation point is where the velocity is zero and since both 
equations, u and v are changing in respect to time, we can set them both to zero and we will get 
this: 

​ 0  =  0 =  𝑢 =  𝑑𝑥
𝑑𝑡 𝑣 =  𝑑𝑦

𝑑𝑡

 
With these concepts, we can then find the integration of each side with the respective component 
that they are changing in respect of whether it be time or position. The following will be the 
Eulerian equations we have integrated: 
 
x-component: 

 𝑢 =  𝑑𝑥
𝑑𝑡

 2. 0 + 1. 2𝑥 =  𝑑𝑥
𝑑𝑡

 
𝑥

𝑜

𝑥

∫ 𝑑𝑥
2+1.2𝑥  =  

𝑡
𝑜

𝑡

∫ 𝑑𝑡

 1
1.2 [𝑙𝑛(2 + 1. 2𝑥) −  𝑙𝑛(2 + 1. 2𝑥

𝑜
)] =  𝑡 − 𝑡

0

 1
1.2 𝑙𝑛 (2+1.2𝑥)

(2+1.2𝑥
0

⎡⎢⎣
⎤⎥⎦

=  𝑡 − 𝑡
0

 𝑒
1

1.2 𝑙𝑛 (2+1.2𝑥)
(2+1.2𝑥

0

⎡⎢⎣
⎤⎥⎦ =  𝑒

𝑡−𝑡
0

 2+1.2𝑥
2+1.2𝑥

0
=  𝑒

(𝑡−𝑡
0
)1.2



 2 + 1. 2𝑥 =  𝑒
(𝑡−𝑡

0
)1.2

⎡
⎢
⎣

⎤
⎥
⎦

2 + 1. 2𝑥
0[ ]

 𝑥(𝑡) =
𝑒

1.2(𝑡−𝑡
0
)⎡⎣ ⎤⎦ 2+1.2𝑥

0[ ]⎡⎢⎣
⎤⎥⎦
−2

1.2

 
y-component: 

 𝑣 =  𝑑𝑦
𝑑𝑡

 1. 0 + 1. 5 𝑐𝑜𝑠(ω𝑡) − 1. 2𝑦 =  𝑑𝑦
𝑑𝑡

 𝑑𝑦
𝑑𝑡 + 1. 2𝑦 = 1. 5 𝑐𝑜𝑠(2π𝑡) + 1

 
Using the following integrating factor, 

 (Integration factor)              𝑒
∫1.2𝑑𝑡

= 𝑒1.2𝑡

 
Multiplying the integrating factor on both sides, we obtain the following: 
 

 𝑒1.2𝑡 𝑑𝑦
𝑑𝑡⎡⎣ ⎤⎦ +  𝑒1.2𝑡 1. 2𝑦[ ] =  𝑒1.2𝑡 1. 5 𝑐𝑜𝑠(2π𝑡) + 𝑒1.2𝑡[1][ ]

 𝑑
𝑑𝑡 (𝑦𝑒1.2𝑡) =  𝑒1.2𝑡 + 𝑒1.2𝑡 1. 5 𝑐𝑜𝑠(2π𝑡)[ ]

 
𝑦

0

𝑦

∫ 𝑑(𝑦𝑒1.2𝑡) =
𝑡

0

𝑡

∫ 𝑒1.2𝑡 + 𝑒1.2𝑡 1. 5 𝑐𝑜𝑠(2π𝑡)[ ][ ]𝑑𝑡 

 
𝑦

0

𝑦

∫ 𝑑(𝑦𝑒1.2𝑡) =  
𝑡

0

𝑡

∫ 𝑒1.2𝑡𝑑𝑡 +
𝑡

0

𝑡

∫ 𝑒1.2𝑡 1. 5 𝑐𝑜𝑠(2π𝑡)[ ]𝑑𝑡

 can be solved the following way: 
𝑡

0

𝑡

∫ 𝑒1.2𝑡 1. 5𝑐𝑜𝑠(2π𝑡)[ ]

  ⇒ ∫ 𝑒1.2𝑡 1. 5 𝑐𝑜𝑠(2π𝑡)[ ]𝑑𝑡 =  𝑒1.2𝑡[1.5 𝑠𝑖𝑛(2π𝑡)] 
2π − ∫ [1.5 𝑠𝑖𝑛(2π𝑡)] 𝑒1.2𝑡(1.2)

2π

 =  𝑒1.2𝑡[1.5 𝑠𝑖𝑛(2π𝑡)] 
2π − −[1.5 𝑐𝑜𝑠(2π𝑡)]𝑒1.2𝑡(1.2)

4π2 + ∫ −1.5𝑐𝑜𝑠(2π𝑡)]𝑒1.2𝑡(1.2)2

4π2

 =  𝑒1.2𝑡[1.5𝑠𝑖𝑛(2π𝑡)] 
2π + 1.5𝑐𝑜𝑠(2π𝑡)𝑒1.2𝑡(1.2)

4π2



 

 =
 𝑒1.2𝑡[1.5𝑠𝑖𝑛(2π𝑡)] 

2π + [1.5𝑐𝑜𝑠(2π𝑡)𝑒1.2𝑡(1.2)

4π2

1+ (1.2)2

4π2

 
Plugging back the integral into the equation, we obtain the following: 

 
𝑦

0

𝑦

∫ 𝑑(𝑦𝑒1.2𝑡) =  
𝑡

0

𝑡

∫ 𝑒1.2𝑡𝑑𝑡 +
𝑡

0

𝑡

∫ 𝑒1.2𝑡 1. 5𝑐𝑜𝑠(2π𝑡)[ ]𝑑𝑡

 𝑦𝑒1.2𝑡[ ]
𝑦

𝑦
0

= 𝑒1.2𝑡

1.2
⎡⎢⎣

⎤⎥⎦

𝑡

𝑡
𝑜

+  
 𝑒1.2𝑡[1.5𝑠𝑖𝑛(2π𝑡)] 

2π + [1.5𝑐𝑜𝑠(2π𝑡)𝑒1.2𝑡(1.2)

4π2

1+ (1.2)2

4π2

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

𝑡

𝑡
𝑜

 𝑦 − 𝑦
0

=  
1.5𝑠𝑖𝑛(2π𝑡)

2π + 1.5𝑐𝑜𝑠(2π𝑡)(1.2)

4π2

1+ (1.2)2

4π2

−
1.5𝑠𝑖𝑛(2π𝑡

𝑜
)

2π +
1.5𝑐𝑜𝑠(2π𝑡

𝑜
)(1.2)

4π2

1+ (1.2)2

4π2

 
𝑦 =  𝑦

0
+ [0. 23 𝑠𝑖𝑛(6. 28𝑡) + 0. 04 𝑐𝑜𝑠(6. 28𝑡)] − [0. 23 𝑠𝑖𝑛(6. 28𝑡

0
) + 0. 04 𝑐𝑜𝑠(6. 28𝑡

0
)

] 
 𝑦 = 𝑦

0
+ 0. 23[𝑠𝑖𝑛(6. 28𝑡) − 𝑠𝑖𝑛(6. 28𝑡

0
)] + 0. 04[𝑐𝑜𝑠(6. 28𝑡) − 𝑐𝑜𝑠(6. 28𝑡

0
)]

 
Next, in order to find the level set function of both the x and y components of the streamline, we 
shall make . We will use the equations that we have formulated for F in terms of x and y 𝑡

0
 =  0

by getting rid of the t component in the said equations. 
 
For the x component, we just have to replace t with the function of x in the pathline y(t):  

 1
1.2  𝑙𝑛 (2+1.2𝑥)

(2+1.2𝑥
0
) = 𝑡 − 𝑡

0

When ,  𝑡
0 

=  0

 1
1.2  𝑙𝑛 (2+1.2𝑥)

(2+1.2𝑥
0
) = 𝑡

 𝑡 = 5
6  𝑙𝑛 (2+1.2𝑥)

(2+1.2𝑥
0
)

                                                       t = ln((2+1.2x)/(2+1.2x0))5/6 



 

Now that we have found what t is, we can substitute the value of t into the y component y(t) and 
also making .  𝑡

0
 =  0

 
When , 𝑡

0
=  0

 𝑦 =  𝑦
0

+ 0. 23 𝑠𝑖𝑛(6. 28𝑡) −  0. 23𝑠𝑖𝑛(6. 28 * 0) + 0. 04𝑐𝑜𝑠(6. 28𝑡)−

0.04cos(6.28* 0)) 
 

Substituting  t = ln((2+1.2x)/(2+1.2x0))5/6  , 

- 0.04 𝑦 =  𝑦
0

+ 0. 23 𝑠𝑖𝑛 6. 28 𝑙𝑛 2+1.2𝑥
2+1.2𝑥

0

5/6( )⎡⎢⎣
⎤⎥⎦

⎡⎢⎣
⎤⎥⎦

+  0. 04 𝑐𝑜𝑠𝑛 6. 28 𝑙𝑛 2+1.2𝑥
2+1.2𝑥

0

5/6( )⎡⎢⎣
⎤⎥⎦

⎡⎢⎣
⎤⎥⎦

Finally,  

 𝐹(𝑥, 𝑦) =  𝑦
0

− 𝑦 + 0. 23 𝑠𝑖𝑛 6. 28 𝑙𝑛 2+1.2𝑥
2+1.2𝑥

0

5/6( )⎡⎢⎣
⎤⎥⎦

⎡⎢⎣
⎤⎥⎦

+ 0. 04 𝑐𝑜𝑠 6. 28(𝑙𝑛 2+1.2𝑥
2+1.2𝑥

0

5/6
)⎡⎢⎣
⎤⎥⎦

⎡⎢⎣
⎤⎥⎦

− 0. 04

 
3. RESULTS  
(Please note that x-axis for each graph represents the x-position and y-axis for each graph 
represents the y-position of the flow.) 
 
3.1 Part I 

 



3.2 Part II 

 
 

3.3 Part III 
Vector Plot, Streamlines, and Pathlines for 5 particles with 4 time particles for Part 3 

 



4. DISCUSSION 
4.1 Interpretation of the results in light of the example applications identified in the 

introduction 
As Part I and Part II are similar problems with different velocity fields from steady-state 

flows, the vector field of Part I needs to represent the flow inside a converging blood vessel. This 
is because the velocity in the positive x-direction must increase with increasing x-value increases 
as they are linearly related with a positive slope. The magnitude of velocity in the y-direction 
must decrease with decreasing distance from the y-value of 0 as they are linearly related with a 
negative slope.  

The vector field of Part II is supposed to be similar to the vector field of Part I in terms of 
how the direction of the velocity vector changes based on the change in both x and y-direction. 
In this case, the x-value and velocity in the x-direction are directly proportional and linearly 
related with a positive slope just like in Part I. The y-value and velocity in the y-direction are 
directly proportional and linearly related with a negative slope just like in Part I. Even though 
this kind of flow is caused by opposite impinging jets rather than a converging blood vessel, the 
streamlines of Part I and Part II are to follow the displayed velocities of every represented 
position of the vector field in a similar way with different magnitudes of position and velocity.  

The vector field of Part III was supposed to be represented in a way that is similar to how 
the vector field of Part II was based on how the velocities of the fluid are to change in position. 
The convective accelerations between all positions of the fluid for Part II and Part III are to be 
exactly the same if not for what causes local acceleration in the y-direction. As the velocities in 
the y-direction are to change with respect to time in a way that represents simple harmonic 
motion in Part III, the represented streamlines in Part III are to be represented in a sinusoidal 
manner due to time being inside a cosine function of the y-velocity. The pathlines represented in 
this vector field display the trajectory of how 5 particles move with respect to time in a duration 
of 2 seconds.  
 
4.2 Comparison between part II and III 

What makes the flow in Part ll steady is the driving pressure gradients of both streams to 
be constant.  What makes the flow in Part lll unsteady is the driving pressure gradients of both 
streams to change over time. Even though velocities change with respect to the position in both 
parts, the velocities for each particular position of the fluid remain constant for Part II while the 
velocities for each particular position of the fluid change over time for Part III. For Part II, the 
stagnation point is constant. For Part III, the stagnation point changes over time.  

Regarding how the vector plots are displayed, Part II only shows streamlines of the 
vector field. Streamlines of Part II show a group of curves that are tangent to the displayed 
velocities of every represented position of the vector field with x-values ranging from -4 to 4 and 
y-values ranging from - 4 to 4. Part III shows pathlines of 5 different particles’ trajectories as 
well as streamlines. Part II did not need pathlines as the streamlines are to remain constant. Part 



III needed pathlines as the velocity and position of the particles needed to change over time and 
that the streamlines needed to look different over time.  
 
4.3 Comparison between streamlines and pathlines in part III 

The streamlines in Part III show a group of curves that are tangent to the displayed 
velocities of every represented position of the vector field with x-values ranging from 0 to 11 and 
y-values ranging from - 5 to 6. As the difference between each adjacent represented position of 
the vector field is 0.25 in both x and y directions,  

The pathlines of Part III show trajectories that certain particles follow as time changes. 
The position of each particle based on certain time durations would show on the vector field to 
make up the pathline. The graphs showed trajectories that particles from certain initial positions 
are to follow. As the initial x-positions of all 5 particles equal zero, the initial y-positions of all 5 
particles are all the integers that range from - 1 to 3. All 5 of the different trajectories displayed 
on the vector field show the position of the particles when the time is equal to 0 seconds, 0.5 
seconds, 1 second, 1.5 seconds, and 2 seconds.  
 
4.4 Limitations of the models and analysis included in this project 

Even though we were able to figure out the velocities of certain points in both x and 
y-direction in all 3 parts, we were only able to use only certain x and y positions instead of every 
single x and y position from negative infinity to positive infinity. Despite making a video in Part 
III that helps determine how the streamlines and positions of certain particles change with 
respect to time, the video was only able to track certain particles from certain positions rather 
than every single particle of the entire fluid. However, we were not able to make the other video 
and the video we made was not what we wanted to see. For the first video, we are expecting the 
vector plot to change over time as the direction of the arrows represented in the graph is to 
change with respect to time. However, everything in the graph did not change and a blurry 
square took up the graph’s space instead. For the second video, we are expecting the vector plot, 
streamlines, pathlines, and position of all 5 particles to change over time as the direction of the 
arrows represented in the graph are to change with respect to time. However, the second video 
turned out not very different from the first video.  
 
5. CONCLUSION 

In this term paper, we studied different flow patterns of blood using basic analytical 
modeling for three different cases: steady flow in a converging blood vessel, steady flow of 
opposite impinging streams, and unsteady flow of opposite impinging streams. These analytical 
models were then used to visualize using MATLAB tools. The two-dimensional models 
discussed in this term paper helped us better understand some of the basic concepts of fluid 
mechanics discussed in this class, and learn about their applications in the field of biomedical 
engineering.  
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9. APPENDIX (MATLAB Code) 
9.1 Code for Part I 
 
% define constants 
L = 12; % length of blood vessel (given) 
R0 = 1.5; % radius of the inlet (given) 
R1 = 1; % radius of the outlet (given) 
a = 1.25; % constant a (calculated) 
b = 6.5625; % constant b (calculated) 
U0 = 63; % velocity of inlet (calculated) 
% creates a meshgrid of this x-interval [0,12] and this y-interval [-1.5,1.5] 
[x,y] = meshgrid(0:1:12, -1.5:0.05:1.5); % x = length, y = radius 
% given equations of the flow 
u = U0*((a*x)/L + 1); 
v = -b*y; 
% plot a vector plot and streamlines  
quiver(x,y,u,v); % vector plot 
[startx, starty] = meshgrid(0,-1.5:0.155:1.5); % meshgrid helps set the number of streamlines, 
%need to keep changing interval size until desired 20 streams are found 
streamline(x,y,u,v,startx,starty); % displays all 20 streamlines 
% plot the graph 
xlabel('x') % labels the x-axis of the graph x-position of the flow 
ylabel('y') % labels the y-axis of the graph y-position of the flow 
title('Vector Plot and Streamline for Part 1') % title of the graph 
axis([0 12 -1.5 1.5]) % sets the range of x-axis from 0 to 12 and the y-axis from -1.5 to 1.5 
 
 
9.2  Code for Part II 
 



[x,y]=meshgrid(-4:0.5:4, -4:0.5:4) ; % creates a meshgrid of this x-interval [-4,4] and this    
%y-interval [-4,4] 
u = 2 + 1.2*x ;  % function of velocity in x-direction 
v = 1 - 1.2*y ; % function of velocity in y-direction 
quiver(x,y,u,v) ; % displays the vector plot 
daspect([1 1 1]) ; 
hold on 
xlabel('x')  % labels the x-axis of the graph x-position of the flow 
ylabel('y')  %  labels the y-axis of the graph y-position of the flow 
title('Vector Plot and Streamline for Part 2')  % gives the graph a title 
F = (1/1.2).*log(abs(2 + 1.2.*x)) + (1/1.2).*log(abs(1 - 1.2.*y)); % defining function that should 
%be contoured 
contour(x,y,F,20, 'LineColor','b')  % contouring appropriately to make 20 streamlines 
axis([-4 4 -4 4]) % sets the range of x-axis from -4 to 4 and the y-axis from -4 to 4.  
 
9.3  Code for Part III 
 
tstag = [0:0.1:2]; % shows values of time for function of  y-position for stagnation point 
ystag = (1 - 1.5*cos(2*pi.*tstag))./1.2; % gives a function of y-position for stagnation point with 
%respect to time 
[x,y] = meshgrid(0:0.5:11, -5:0.5:6); % creates a meshgrid of this x-interval [0,11] and this 
%y-interval [-5,6] 
x0 = 0;  % x-position is 0 for all particles 
t0 = 0; % time is 0 for all particles 
yi0 = -1; % y-position is -1 for 1st particle 
yi1 = 0; % y-position is 0 for 2nd particle 
yi2 = 1; % y-position is 1 for 3rd particle 
yi3 = 2; % y-position is 2 for 4th particle 
yi4 = 3;  % y-position is 3 for 5th particle 
for t = [0:0.5:1.5] % talking about particles at these time intervals: time = 0s, time = 0.5s, time = 
%1s, and time = 1.5s 
    xt = ((2 + 1.2.*x0)*exp((t-t0).^1.2) - 2)/1.2 % function of x-position with respect to time for 
%all 5 particles  
    a = (1.5/(2*pi))*sin(2*pi.*t); 
    a0 = (1.5/(2*pi))*sin(2*pi.*t0); 
    b = (1.5*1.2/(4*pi*pi))*cos(2*pi.*t); 
    b0 = (1.5*1.2/(4*pi*pi))*cos(2*pi.*t0); 
    c = a + b 
    c0 = a0 + b0 
    d = (1 + (1.2*1.2/(4*pi*pi))).^-1; 
    u = 2 + 1.2.*x;  % function of velocity in x-direction 



    v = 1 + 1.5.*cos(2.*pi.*t) - 1.2*y; % function of velocity in y-direction 
    XC = (1/1.2).*(log((2 + 1.2.*x)/(2+1.2.*x0))); 
    AC = (1.5/(2*pi))*sin(2*pi.*XC); 
    BC = (1.5*1.2/(4*pi*pi))*cos(2*pi.*XC); 
    C1 = 0.23*log(abs(6.28*(sin(2+1.2*x)/(2+1.2*x0)).^(5/6))) 
    C2 = 0.04*log(abs(6.28*(cos(2+1.2*x)/(2+1.2*x0)).^(5/6))) 
    quiver(x,y,u,v);  % displays the vector plot 
    hold on  
    plot(xt, yi0 + d.*(c - c0), 'ok', 'markerface', 'k') % plot of 1st particle’s pathline based on 
%parametric equations 
    F0 = yi0 + C1 + C2 - y - 0.04  ; % defining function that should be contoured based on the 1st 
%particle 
    contour(x,y,F0,20, 'LineColor','b') % contouring appropriately to make 20 streamlines based 
%the 1st particle 
    plot(xt, yi1 + d.*(c - c0), 'ok', 'markerface', 'k') % plot of 2nd particle’s pathline based on 
%parametric equations 
    F1 = yi1 + C1 + C2 - y - 0.04 ;   % defining function that should be contoured based on the 
%2nd particle 
    contour(x,y,F1,20, 'LineColor','r') % contouring appropriately to make 20 streamlines based 
%the 2nd particle 
    plot(xt, yi2 + d.*(c - c0), 'ok', 'markerface', 'k') % plot of 3rd particle’s pathline based on 
%parametric equations 
    F2 = yi2 + C1 + C2 - y - 0.04 ; %  defining function that should be contoured based on the 3rd 
%particle 
    contour(x,y,F2,20, 'LineColor','g') % contouring appropriately to make 20 streamlines based 
%the 3rd particle 
    plot(xt, yi3 + d.*(c - c0), 'ok', 'markerface', 'k') % plot of 4th particle’s pathline based on 
%parametric equations 
    F3 = yi3 + C1 + C2 - y - 0.04 ; % defining function that should be contoured based on the 4th 
%particle 
    contour(x,y,F3,20, 'LineColor','y') % contouring appropriately to make 20 streamlines based 
%the 4th particle 
    plot(xt, yi4 + d.*(c - c0), 'ok', 'markerface', 'k') % plot of 5th particle’s pathline based on 
%parametric equations 
    F4 = yi4 + C1 + C2 - y - 0.04 ; %  defining function that should be contoured based on the 5th 
%particle 
    contour(x,y,F4,20, 'LineColor','m')  % contouring appropriately to make 20 streamlines based 
%the 5th particle 
    axis([0 11 -5 6]) % sets the range of x-axis from 0 to 11 and the y-axis from -5 to 6.  
end 



VIDEO = VideoWriter('1stpart3IIIfinal.avi'); % names video file 
open(VIDEO); % opens video 
for n = 1:0.01:2 
    t = n - 1; % for certain time frames 
    v = 1 + 1.5*cos(2*pi.*t) - 1.2*y; % velocity in the y direction 
    surf(x,F0,v); % creates appropriate surface 
    axis(([0 11 -5 6 -1 1]));  % sets the range of x-axis from 0 to 11 and the y-axis from -5 to 6.  
    CORRECTFRAME = getframe; 
    writeVideo(VIDEO,CORRECTFRAME); 
    n = n + 0.01; 
end 
close(VIDEO);  % closes video 
VIDEO = VideoWriter('2ndpart3IIIfinal.avi');  % names video file 
open(VIDEO); % opens video 
for n = 1:0.01:2 
    t = n - 1 % for certain time frames 
    v = 1 + 1.5*cos(2*pi.*t) - 1.2*y; % velocity in the y direction 
    surf(x,y,v);% creates appropriate surface 
    axis(([0 11 -5 6 -1 1])); % sets the range of x-axis from 0 to 11 and the y-axis from -5 to 6.  
    CORRECTFRAME = getframe; 
    writeVideo(VIDEO,CORRECTFRAME); 
    n = n + 0.01; 
end 
close(VIDEO); % closes video 
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