
Hi there! Welcome to St. Jude’s Google Summer of Code 2025 homepage 🎉! With any
questions, feel free to reach out to us on Slack in the #gsoc-2025 channel if the question is of
general interest, through direct message if the question is confidential, or by email if you can’t
use Slack (clay.mcleod@stjude.org and stephanie.sandor@stjude.org)!

If you do apply, please be sure to use our Application template!

Table of contents
Table of contents
Background
Projects

Extend Sprocket language server protocol and extension.
Real-time monitoring dashboard and terminal user interface (TUI) for Crankshaft.
Integrated end-to-end workflow testing framework within Sprocket.

We’re open to other, relevant ideas.
Application template

Background
Our projects are centered around changing how genomics analysis is done at scale. In an effort
to advance cures for pediatric catastrophic diseases as quickly as possible, St. Jude has been
sharing critical research data with the biomedical community for about 7 years now (see the St.
Jude Cloud paper for more details). This endeavour has led to a great deal of experience in the
challenges of sharing this data with the broader academic community. To address those issues,
we recently started our own workflow execution engine written in Rust called Sprocket aimed at
enabling genomic analyses at petabyte-scale—though we’re focused on genomics, we think
that Sprocket can be used for nearly all scientific domains.

Sprocket is built on top of the open Workflow Description Language (github.com/openwdl), of
which we have multiple people on the governance committee, and alongside the execution
engine we’re building, there are also many language design problems we’re tackling such as
building our own lexer, parser, abstract syntax tree, concrete syntax tree, linter, validation tools,
language server protocol, VSCode plugin, formatter, and documentation generator. To that end,
all of our projects are geared around improving either the Sprocket execution engine itself
(better for those interested in cloud or genomics) or the developer ecosystem around WDL
(better for those interested in programming language design and developer experience
improvements). You can find out more by navigating to the links below.

●​ https://github.com/stjude-rust-labs/wdl. The core crates for the project. The wdl
crates contain functionality covering the lexing, parsing, abstract syntax tree, concrete
syntax tree, linting, validation, language server protocol, formatting, and documentation

https://join.slack.com/t/rust-omics/shared_invite/zt-30ntw2bpi-2hollhtHX6Zt8UvYeP_KcQ
mailto:clay.mcleod@stjude.org
mailto:stephanie.sandor@stjude.org
https://pmc.ncbi.nlm.nih.gov/articles/PMC8102307/
https://pmc.ncbi.nlm.nih.gov/articles/PMC8102307/
http://github.com/openwdl
https://github.com/stjude-rust-labs/wdl

generation. This is the core set of libraries upon which Sprocket is created, but it is not
generally considered “user-facing”.

●​ https://github.com/stjude-rust-labs/crankshaft. A headless workflow execution
workflow execution engine. If the wdl crates above contain the WDL-specific parts, the
crankshaft crate(s) contain the language agnostic plumbing code for submitting jobs
to backend execution platforms (local, Docker, Cloud, HPC, etc).

●​ https://github.com/stjude-rust-labs/sprocket. The user-facing command line tool that
brings all of the above functionality together. Notably at the time of writing, much of the
functionality that has been developed in wdl and crankshaft has not yet been
surfaced in sprocket—that’s where you come in 🙂.

●​ https://github.com/stjude-rust-labs/sprocket-vscode. The extension for Sprocket in
VSCode. You can also see the extension published here.

●​ https://github.com/openwdl/wdl. Some projects may require interacting with or making
suggestions to the Workflow Description Language. The linked repository here includes
the entire specification that you can browse to get a sense of how it works.

●​ https://github.com/stjude-rust-labs. The organization as a whole. We encourage you
to check out the other projects we’re working on here—particularly as it relates to other
projects you might want to propose.

Projects

Extend Sprocket language server protocol and extension.
Length: 350 hours, Difficulty: Medium to hard (stretch)

Description

Our developer tools and experience project focuses largely on Sprocket’s LSP integration within
VSCode and the VSCode extension itself (linked above). During this track, you’ll utilize the
existing wdl-lsp packages in the wdl crates repository linked above to expose things like
lookup definition, go to definition, references, snippets, and semantic code highlighting. For a
stretch goal, we would like to continue optimizing and refining the internal workings of the LSP
(and the associated AST/CST). Along the way, you’ll learn about fundamentals of writing a
programming language from scratch, how and LSP implementation works, Rust itself, and you’ll
contribute to Workflow Description Language developers everywhere being more productive
because of your efforts.

Outcomes

●​ Lookup definition, go to definition, references, snippets, and semantic code highlighting
integrated within the Sprocket VSCode extension (linked above) (Project).

●​ Improved latency, memory use, cpu use, and reliability for the LSP engine (Project,
stretch goal).

https://github.com/stjude-rust-labs/crankshaft
https://github.com/stjude-rust-labs/sprocket
https://github.com/stjude-rust-labs/sprocket-vscode
https://marketplace.visualstudio.com/items?itemName=stjude-rust-labs.sprocket-vscode
https://github.com/openwdl/wdl
https://github.com/stjude-rust-labs/wdl

●​ Seamless WDL development experience for workflow authors (End users).
●​ A deeper understanding of programming language tooling and Rust (Contributor) .

Relevant Skills

Fluency with Rust or another equivalent high performance language (C, C++, Go) with a desire
to learn Rust is a must. Experience building developer tools and extensions is slightly preferred.

Potential Mentors

Clay McLeod, Director of Product Development and Engineering

Proposal Advice

First, we recommend following Visual Studio Code’s guide on building your first extension (link).
This will give you a sense of what it’s like to build a Visual Studio Code extension without too
much time investment. Next, we recommend reading and understanding at a high-level what the
Language Server Protocol (LSP) is (link). The protocol is incredibly detailed with many corners
so to speak—you don’t need to understand everything. It’s just important to understand
generally how it works and what problems it solves. Last, we recommend downloading and
trying to load up the Sprocket VSCode extension (link)—the instructions to do so are in the
project README.md (link). All of the information you end up learning from this exercise should
be included in the final application.

Real-time monitoring dashboard and terminal user interface (TUI) for
Crankshaft.
Length: 175 hours to 350 hours, Difficulty: Medium to Hard

Description

Running petabyte-scale genomics analyses is only tenable when you know what’s actually
going on with your workflows. In this track, you’ll work to develop real-time monitoring tools for
Crankshaft (that eventually will surface in Sprocket) to ensure that end users know what’s going
on with thousands of their workflows. Interactions with jobs, such as killing jobs or interrogating
their logs, is a stretch goal but not required. Along the way, you’ll learn about cloud analysis at
scale, how a workflow execution engine is built, how to develop a terminal-user interface, and
Rust itself.

Outcomes

●​ A clear, easy to use and interpret terminal user interface (very similar to
tokio-rs/console) that allows for interpretation, monitoring, and some lightweight

https://code.visualstudio.com/api/get-started/your-first-extension
https://microsoft.github.io/language-server-protocol/
https://github.com/stjude-rust-labs/sprocket-vscode
https://github.com/stjude-rust-labs/sprocket-vscode/tree/main?tab=readme-ov-file#development
https://github.com/tokio-rs/console

interaction with jobs. The extent of the interactions with the jobs depends on how far we
get with the initial monitoring and displaying of statuses (Project).

●​ Hands on experience with building the inner workings of a petabyte-scale engine using
Rust. This includes building expertise in the Rust programming language and
tokio-related crates (Contributor).

Relevant Skills

Fluency with Rust or another equivalent high performance language (C, C++, Go) with a desire
to learn Rust is a must.

Potential Mentors

Clay McLeod, Director of Product Development and Engineering

Proposal Advice

We’d highly recommend you go and explore what has been created for tokio-console (link)
as a starting point. This will give you a good sense of a similar project that aims to describe the
inner workings of a complex system using a TUI. Further, you could check out the ratatui
crate (link), as that’s a leading library for creating such TUIs (though, if you have a different
library you want to use, that’s totally okay too). Last, if you’re feeling up to it, it would be great to
write a small program using a TUI just to make sure you understand generally how they work.
All of the information you end up learning from this exercise should be included in the final
application.

Integrated end-to-end workflow testing framework within Sprocket.
Length: 350 hours, Difficulty: Medium to Hard (stretch)

Description

Within Sprocket, we’d like to build out a first-class testing framework that workflow authors can
depend on to end-to-end test their workflow throughout development. This subcommand will be
designed with continuous integration and deployment in mind, and will use the St. Jude Cloud
Workflows repository as a baseline for implementing this scheme. As a stretch goal, generating
fake data for genomics workflows themselves might be compelling to start on (check out the
ngs generate command (link) to get an idea of what this might look like. Along the way, you’ll
learn a bit about genomics, how workflows are written and deployed at scale, how to robustly
test scientific workflows, and Rust itself.

Outcomes

https://github.com/tokio-rs/console
https://ratatui.rs/
http://github.com/stjudecloud/workflows
http://github.com/stjudecloud/workflows
https://github.com/stjude-rust-labs/ngs

●​ A end-to-end testing framework for reproducible workflows using Sprocket that can be
integrated into the CI/CD workflows of tool developers using WDL (Project, end users).

●​ (Stretch Goal) New fake data generation tools, geared towards generating fake
genomics data, for use within these testing workflows (Project, end users).

●​ A better understanding of Rust, genomics software engineering, and what it takes to
scale the development of genomics workflow analyses (Contributor).

Relevant Skills

Fluency with Rust or another equivalent high performance language (C, C++, Go) with a desire
to learn Rust is a must. Fluency in genomics is not required, but you must be willing to spend a
significant amount of time learning if you don’t already understand it (ergo, you must want to
learn genomics).

Potential Mentors

Clay McLeod, Director of Product Development and Engineering

Proposal Advice

First, we recommend reading through and understanding the general idea behind the Workflow
Description Language standard (link). This will give you a good idea of how workflows are
expressed in Sprocket. Next, we recommend you take a look at St. Jude’s repository for
workflows (link) to get a sense of what a real-life repository of these workflows where testing
should occur looks like. You can take a look at the tools folder to see the individual WDL tasks
and the workflows folder see the WDL workflows. The rnaseq-standard pipeline is a
particularly good example (link). Last, we recommend looking at the state of the art approach
today for doing this, which is a project called pytest-workflow (link). There are several
things we think this library got right alongside several things we would change, so just take the
inspiration as a grain of salt, not as a template of something we want to redo in Rust. All of the
information you end up learning from this exercise should be included in the final application.

We’re open to other, relevant ideas.

●​ We’re also open to other ideas! Feel free to check out the St. Jude Rust Labs
organization to see what we’re working on. In particular, ideas using the omics library
(https://github.com/stjude-rust-labs/omics) and the chainfile library
(https://github.com/stjude-rust-labs/chainfile) would be really cool to see. Last, if you do
plan to submit your own idea, please discuss them with us briefly during the discussion
period (February 27-March 24) before submitting an application—we don’t want you to
do a lot of work for an idea that’s unlikely to be selected!

https://docs.openwdl.org/
https://github.com/stjudecloud/workflows
https://github.com/stjudecloud/workflows/blob/main/workflows/rnaseq/rnaseq-standard.wdl
https://pytest-workflow.readthedocs.io/en/stable/
https://github.com/stjude-rust-labs/omics
https://github.com/stjude-rust-labs/chainfile

Application template
Please use this application template when submitting your proposal.

1.​ Project Title. Give a single sentence title to your project. You can use the existing
project titles above or tweak them based on your own interests/ideas.

2.​ Abstract (~4-6 sentences). Describe the big picture of what you plan to accomplish
during this project. You can feel free to reuse ideas or language that we used
above—just make sure you give a sense of what you want to accomplish underneath
those broad headings.

3.​ Project Description. An unbounded project description. Feel free to talk through the
details of how you prepared for submitting this application (did you follow any of our
advice for each idea? How did that shape the way you think about the idea, etc) and any
more detailed plans for how you plan to go about the project.

4.​ Major contributions. A list of goals that you hope to accomplish by the end of the
program. Use a bulleted list here, and be sure to include both (a) what the outcome is
going to be and (b) the target audience of that outcome.

5.​ Timeline. Break down the work to achieve these major contributions into a timeboxed
plan as it aligns to the GSoC timeline (link). We’ve provided a template here to get
started.

Period GSoC Phase What I’ll aim to accomplish

May 8 - June 1 Community Bonding
Period

GSoC contributors get to know
mentors, read documentation, get
up to speed to begin working on
their projects

June 2 - June 8 Coding (Week 1)

June 9 - June 15 Coding (Week 2)

June 16 - June 22 Coding (Week 3)

June 23 - June 29 Coding (Week 4)

June 30 - July 5 Coding (Week 5)

July 6 - July 12 Coding (Week 6)

July 13 - July 19 Coding (Week 7) Midterm evaluation is July 18

July 20 - July 26 Coding (Week 8)

July 27 - August 3 Coding (Week 9)

August 4 - August 10 Coding (Week 10) Your plan should start to include
thinking about documenting the

https://developers.google.com/open-source/gsoc/timeline

final product around this point.

August 11 - August 17 Coding (Week 11)

August 18 - August 24 Coding (Week 12)

August 25 - September 1 Coding (Final week)

6.​ Time Period/Working Hours. Let us know how much time you plan to spend on the

project. Be sure to indicate both (a) how many hours you think the project will take (we’re
not looking for a complicated hourly breakdown—just if it’s 175 hours or 350 hours as
defined by the GSoC guidelines) and (b) roughly how many hours per week you plan to
spend on the project.

7.​ Name and GitHub username. Please share with us your name and the GitHub
username with which you are going to do the work.

8.​ Resume. Please include a recent copy of a resume/CV.
9.​ Code review. Please provide us with a link to a code sample that you feel particularly

proud of and that demonstrates your abilities. This can be a PR that you made to an
existing codebase or a brand new project that you created and worked on. The key is
that we want the code to be completely yours (or, at least, it needs to be clear which
parts you specifically did, like in the case of a PR you created).

	Table of contents
	Background
	Projects
	Extend Sprocket language server protocol and extension.
	Real-time monitoring dashboard and terminal user interface (TUI) for Crankshaft.
	Integrated end-to-end workflow testing framework within Sprocket.

	We’re open to other, relevant ideas.
	Application template

