Lycée	Ecl	hal	bbi
Machr	aa	ρl	ain

IOTIONS EN LOGIQUE

1BAC LSH 1 et 2

F	r	. LATRACH Abdelkbir
Nom	:	

-	-		
/	$I \alpha$	proposition	
1.	Lu	proposition	

A Activité 1):

Mettre une croix (x) dans la case qui convient.

Textes mathématiques	Vrai	Faux	On ne peut pas décider sa vérité
\Box "10×2 + 15 = 35"			
☑15×2			
2 − 4≥12			
$\boxed{2"\sqrt{9}=3"}$			
□"7 est un nombre pair"			
$\boxed{2"\sqrt{16 + 9} = \sqrt{16} + \sqrt{9}"}$			

□□ Définition:

Une proposition est un texte mathématique qui a un sens pouvant être vrai ou faux mais pas les deux en même temps.

On note souvent une proposition par les lettres P, Q ou R

\square Exemples :

- "4 > 3 ": -----
- "2 + 2 = 5 ": -----
- "Tout carré est un rectangle": -----

□□ Définition :

Une fonction propositionnelle est un texte mathématique qui comprend une ou plusieurs variables et qui est vrai pour certaines valeurs attribuées à ces variables et faux dans les autres cas.

☐ Exemples:

• *P*(*x*): "*x*∈*R*, *x*≻5":-----

(x,y): "x - y = 4"

II. Les quantificateurs :

1. Quantificateur universel:

□□ Définition :

Soit P(x) une fonction propositionnelle tel que x est un élément d'un ensemble E.

Si P(x) est vraie pour tout élément de E on écrit : $(\forall x \in E)$: P(x).

• Le symbole "∀" s'appelle *quantificateur universel* et il se lit : pour tout ou quel que soit.

☐ Exemples:

	2.	
•	$(\forall x \in R): x^2 > 0:$	

• $(\forall x \in R): x^2 \ge x:$

 $(\forall x \in R) (\forall y \in R): x + y = 2:$

2. Quantificateur existentiel:

□□ Définition :

Soit P(x) une fonction propositionnelle tel que x est un élément d'un ensemble E.

S'il existe au moins un élément de E pour lequel P(x)est vraie on écrit : $(\exists x \in E)$: P(x).

• Le symbole "∃" s'appelle *quantificateur existentiel* et il se lit : il existe au moins.

☐ Exemples :

- $(\exists x \in R)$: $x^3 = 8$:-----
- $(\exists x \in R)$: $x^2 = -2$:-----

♠ Application ①:

Ecrire les propositions suivantes à l'aide des quantificateurs:

- \square P_1 : "Quel que soit n un entier naturel : $n \ge 0$ ".
- \square P_2 : "Pour tout x de $[2; + \infty[: x 2 \ge 0]$ ".
- \Box P_a : "Il existe au moins deux nombres réel a et b tels que : $a \times b = 4$ ".
- \Box P_{A} : "Il existe au moins un élément x de Z tel que :

 $x^2 - x = 0$ ". Solution:

III. OPERATIONS SUR LES PROPOSITIONS :

1. La négation d'une proposition :

□□ Définition :

La négation d'une proposition P, noté P ou P, est la proposition qui vraie si P est fausse et qui est fausse si P est vraie.

P	\overline{P}	Ce tableau est appelé le tableau de vérité de la
		négation

☐ Exemples :

La proposition	P	La proposition	ī \overline{P}
• 3 > 2		•	
$ \bullet (-2)^2 = -4 $		•	
• − 3∈N		•	

□□ Propriété :

- La négation de la proposition : " $(\forall x \in E): P(x)$ " est : -----
- La négation de la proposition : " $(\exists x \in E): P(x)$ " est : ------
- La négation de la proposition :
 - " $(\forall x \in E)(\exists y \in E) : P(x, y)$ " est :
- La négation de la proposition :
- " $(\exists x \in E)(\forall y \in E): P(x, y)$ " est:

☐ Remarque :

Le symbole	>	<	≥	<u>≤</u>	=	€
Sa négation						

- ☐ Exemples :
- La négation de $(\forall x \in R)$: $x \ge 1$ est :
- La négation de $(\exists n \in N)$: $\sqrt{n} \in N$ est :
- •
- La négation de $(\forall x \in R)$: $x^2 + x + 1 \ge 0$ est :
- La négation de $(\forall n \in N)$ $(\exists m \in N) : m \ge n$ est :

2. La disjonction

□□ Définition :

La disjonction de deux propositions P et Q est la proposition qui est vraie si au moins l'une des deux propositions est vraie on la note P ou Q ou $P \lor Q$.

Tableau de vérité de P ou Q:

Р	Q	P ou Q

☐ Exemples:

- " $(-5 \ge 2)$ ou $(5 \ge 2)$ ": -----
- "(3 + 2 = 6) ou (− 3≥1)": -----
- "(- 5∈*R*) ou (3 *divise* 12)": ------

3. La conjonction

□□ Définition :

La conjonction de deux propositions P et Q est la proposition qui est vraie uniquement si les deux propositions P et Q sont vraies en même temps on la note : P et Q ou $P \land Q$.

Tableau de vérité de (P et Q):

P	Q	P et Q

\square Exemples :

- " $(-5 \ge 2)$ et $(5 \ge 2)$ ": -----
- "(3 + 2 = 6) et $(-3 \ge 1)$ ": -----
- "(− 5∈*R*) et (3 *divise* 12)": -----

Application 2:

Déterminer la valeur de vérité de chacune des propositions suivantes :

- \Box P_1 : (3 est impair) et (3 = 5).
- $\Box P_{2}$: (4×8 = 20) ou (10 est pair).
- $\Box P_3$: (9-3=6) et $(-1 \in Z)$.
- $\Box P_4: (-4 \in \mathbb{N}) \text{ ou } (\forall x \in \mathbb{R}: x^2 + 1 > 0).$

	🗷 Application ③:
	Montrer que : $2 \le x \le 3 \implies 3 \le 2x - 1 \le 5$.
	🗷 Solution :
☐ Remarques :	
Soient <i>P</i> et <i>Q</i> deux propositions. • La négation de (<i>P</i> et <i>Q</i>) est • La négation de (<i>P</i> ou <i>Q</i>) est	
• La négation de « $(0 \ge 2)$ et $(1 + 5 = 3)$ » est :	
 La négation de «(5∈N) ou (∀x∈R: x²>0)» est : 4. L'implication ☐ Définition : L'implication de deux propositions P et Q est la proposition qui est fausse seulement dans le cas P est 	5. L'équivalence $\Box\Box$ Définition : L'équivalence de deux propositions P et Q est la proposition ($P\Rightarrow Q$ et $Q\Rightarrow P$) qu'on note par $P\Leftrightarrow Q$ et se lit « P est équivalente à Q » ou bien « P si et seulement si Q ».
vraie et Q est fausse. On la note par $P \Rightarrow Q$ et se lit : P	$\bullet P \Leftrightarrow Q$ est vraie seulement si P et Q ont même valeur
implique Q . Tableau de vérité de $P \Rightarrow Q$:	de vérité. Tableau de vérité de $P \Leftrightarrow Q$:
$P \mid Q \mid P \Rightarrow Q$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$
□ Exemples: • ""2 > 1 ⇒ 2 + 3 = -1:	

Mor	IV. Les raisonnements mathématique 1. Raisonnement par équivalence : Exemples : $Exemples : error que : Exemples : a^2 + b^2 = 2ab \Leftrightarrow a = b.$
	2. Raisonnement par disjonction des cas : Exemple : oudrons dans R l'équation : $ x + 5 = 3x$.
	3. Raisonnement par l'absurde :
	Exemple: $0 \text{ n'a pas d'inverse dans } R$.