
Task list

[]

Dec 08.

​Fully understand “shift” and “simplify” operations in LR algorithm.
Dec 07.

​ Init Minishell

Dec 06.
​Understand the tokenizing more, so we can design a data structure.

​Understand behavior of expander

​$...

​Parser: … study

​Lexer: Find out all possible syntax errors.

​Schedule plan: when to make decisions, when to have prototypes, etc…

Dec 05.

​Continue going through the bubbles.

​Understand the tokenizing more, so we can design a data structure.

​

operator:

●​ |

●​ <

○​ redirect input

●​ >

○​ redirect output

●​ <<

○​ here doc

●​ >>

○​ append mode

●​ &&

○​ AND

●​ ||

○​ OR

token:

●​ def: string between 2 operators

○​ $

○​ quotes:

■​ “, ‘

token type:

●​ it will have different behavior by different types

○​ >> APPEND

○​ << HERE_DOC

○​ < INPUT

○​ > OUTPUT

○​ && AND

○​ || OR

○​ WORD

special symbol:

●​ quotes

●​ operators

●​ $

●​ \

LEXER:

●​ def: handle grammar

○​ error and exit

○​ empty string does nothing

Test cases:

Mandatory
●​ How to handle the input redirect operator, it will impact how to split tokens

○​ echo 1 < out haha

○​ echo 1 > out haha

○​ echo 1 | < out cat

○​ ANSWERS:

■​ Positions of redirections don’t matter. They can be anywhere between

pipes.

■​ Both < and > always get executed, unless their parents node in the

tree is an && or || - then it depends on the result of the sibling.

○​ echo 1 | (echo 2 && cat && echo 4 > out > out2 echo A | echo 5) || echo 6

2

1

5

■​ The cat receives the pipe as input, bc echo 2 didn’t read from it.

○​ echo 1 | echo 2 && echo 3 && cat > out > out2 | echo 5 || echo 6 > out3

​ ​ 2

​ ​ 3

​ ​ 5

​ ​ hanging…

■​ cat hangs, but the files still get created/overwritten.

●​ output redirect. it will impact how to split tokens

○​ > out

○​ ANSWER:

■​ After < or > there always has to be a file. ​

So < / > and the word after it belong together.

○​ If multiple redirections, bash first tests all files, and if any of them doesn’t

exist, it only displays error for this cmd.

■​ However, if there’s a heredoc inbetween, the files right of are separate

from the ones before the heredoc.

○​ Multiple redirections get evaluated from left to right, and every right one

replaces the the previous one.

●​ print-order: Apparently all successful outputs come first. Error after, but error-order

random.

○​ Be careful with ft_printf, bc it uses write() bc we do not have mutex. Also no

dprintf.

●​ Assignment:

○​ a=1 echo $a → <newline>

○​ a=1 | echo $a → <newline>

○​ a=1 && echo $a → 1

●​ Lexer:

○​ Check if two operators connect to each other (whitespace ignored) - Error.

○​ Handle odd amount of quotes. - Just error.

■​ Wait for matching pair.

■​ Escape character ‘\’ escapes a special symbol.

○​ Lexer skips whitespace - it does nothing.

○​ Anything touching the opening quote before or the closing quote after belongs

to the string.

■​ Inside of quotes, whitespace gets kept.

●​ Here_doc:

○​ cat << end " [ENTER]​

" [ENTER] ​

end

○​ << a << b​

Do until a, then until b.

○​ Signal interaction with here_doc:

■​ Ctrl+C:​

bash-5.1$ cat << eof | echo 1​

> ^C

■​ Ctrl+D:​

bash-5.1$ cat << eof | echo 1​

> ​

bash: warning: here-document at line 56 delimited by end-of-file

(wanted `eof')​

1

●​ Expander:

○​ export A=12$A​

echo $A -> 12​

export A=12$A​

echo $A -> 1212

○​ export B=bbbb​

echo aaaa$B -> aaaa bbbb​ (space before expansion)

○​ ">"'>' ​ -> always expands to >>

●​ Builtins:

○​ export:

■​ export must only do something if there is no pipe before or after it.

○​ exit:

■​ exit | exit does not exit and $? stays as it was.

■​ exit | exit 42 does not exit and $? is 42.

■​ exit 42 | exit does not exit and $? stays as it was.

Optional

●​ builtins:

○​ cd:

■​ autocomplete

●​ Escape special characters in files and directories.

Notes:

●​ FILES:​
int fd = open(path, O_RDWR|O_CREAT, 00644);

●​ TOKEN:​

​ enum { int type​

​ char *data }​

​

Implementation:

General:

●​ If malloc fails anywhere, should we have a clean_and_exit_shell function and let shell

be a global variable?

Lexer:

●​ data is a void * -> operator will be converted to int later, word to char *

●​ Operators should always be detected, unless they are in a quoted string. The

touching rule of quotes does not apply here.

●​ "" echo 1 -> bash: : command not found … “” should be a WORD that will be

expanded to a nul-terminated string.

Heredoc:

●​ Heredoc happens before expander.

●​ After heredoc finished all of the heredoc input gets expanded.

●​ Wrong, Bash Manual describes it.

Executor:

https://www.gnu.org/savannah-checkouts/gnu/bash/manual/html_node/Redirections.html#Here-Documents

●​ Builtin commands that are invoked as part of a pipeline are also executed in a

subshell environment. [Bash manual]

Built-ins:

●​ export:

○​ Difference between export and plain variable assignment:

https://www.baeldung.com/linux/bash-variables-export

Questions:

Lexer:
​ export""G=e -> bash: exportG=e: command not found … Should quotes be preserved
in data?​
Yes.

https://www.gnu.org/savannah-checkouts/gnu/bash/manual/html_node/Command-Execution-Environment.html#:~:text=Builtin%20commands%20that%20are%20invoked%20as%20part%20of%20a%20pipeline%20are%20also%20executed%20in%20a%20subshell%20environment.
https://www.baeldung.com/linux/bash-variables-export

	Task list
	Test cases:
	Notes:
	Implementation:
	Questions:

