
LNT RFC: LNT/Test-suite support for custom metrics and test parameterization
The following RFC describes two LNT enhancements:

●​ Custom (extensible) metrics
●​ Test parameterization

There are separate sections describing these proposals and patches can be independent. However, code examples, diagrams and screenshots
in the document show both enhancements.

LNT/Test-suite support for custom metrics
Goal
Enable LNT support of custom metrics such as: user-defined run-time and static metrics (power, etc.) and LLVM pass statistic counters.
Provide integration with LLVM testsuite to automatically collect LLVM statistic counters or custom metrics.

Analysis of current Database
The following figure shows ER-diagram of the current database:

There are database tables describing common data for compile tests and nts tests, however, multiple tables for compile and nts tests are
duplicating. Compile tests tables have the same structure as nts tests. Compile_sample table has different fields - parameters of statistics(e.g.
size_bytes, mem_bytes, sys_time and etc). There are separate packages for each test suite.

Limitations
It seems LNT supports only “simple” tests from the LLVM test suite. Nightly tests are not fully supported in trunk and data is missing in
database. There were questions about nightly tests on the mailing list:​
(https://groups.google.com/forum/#!searchin/llvm-dev/nightly$20lnt/llvm-dev/DkpIGHy_adk/CNeuT8OPalMJ,

https://groups.google.com/forum/#!searchin/llvm-dev/nightly$20lnt/llvm-dev/DkpIGHy_adk/CNeuT8OPalMJ

https://groups.google.com/forum/#!searchin/llvm-dev/nightly$20lnt/llvm-dev/6zHKOV9Kc34/-U6_Ohstb4oJ,
https://groups.google.com/forum/#!searchin/llvm-dev/lnt$20nightly/llvm-dev/SUSvh3GTcbU/lau4WSQ_mdwJ).
LNT supports some pre-defined metrics for the LLVM testsuite, but it is hard to add new custom metrics or even integrate other existing
metrics from test suite.

Migration
Migration 7 to 8 adds new table FieldChangev2. Old table FieldChange isn’t removed from database, but it isn’t used (should it be removed
if there is no opportunity to access data?).

Proposal
There are three ways to make database more flexible:

1.​ Keep package structure and create new tables for each package, connecting them with testsuite on the fly. Drawbacks are large
number of duplicating tables (e.g. “package” for each test suite) and slow table creation or cross-testsuite queries.

2.​ Use semi-structured data for description of multiple fields inside single generic field. This can slow down queries and joins.
3.​ Remove hard-coded packages, introduce tables for common value types and intermediate tables (mapping values to samples). new

structure should be suitable for all parameters described in report files of LLVM TestSuite.

I suggest tables re-design (option 3) with the following database structure:

https://groups.google.com/forum/#!searchin/llvm-dev/nightly$20lnt/llvm-dev/6zHKOV9Kc34/-U6_Ohstb4oJ
https://groups.google.com/forum/#!searchin/llvm-dev/lnt$20nightly/llvm-dev/SUSvh3GTcbU/lau4WSQ_mdwJ

There is limited set of value types in the LLVM TestSuite reports. Independent tables are created for each data type - string, integer, float and
status. “Sample” table does not include testsuite-specific fields anymore, they are stored in “FieldValue” tables that contain SampleID field.
This allows to eliminate duplicating tables. Moreover, sample table contains RunID with options that allow executing queries with run
different options (HW, OS, etc.) and compare them.

This structure allows using LNT with any LLVM TestSuite tests and reports without modification of the database structure. In order to ease
integration of LLVM test suite reports to LNT, “fields description” files are proposed. They describe mapping of report fields to LNT
database fields and their properties. The following JSON example shows test suite fields:
{
 "Fields" : [{
 "TestSuiteName" : "Bytecode",
 "Type" : "integer",
 "BiggerIsBetter" : 0
 },
 {
 "TestSuiteName" : "GCC",
 "Type" : "real",
 "BiggerIsBetter" : 0,
 "Name" : "GCC time"
 },
 {
 "TestSuiteName" : "JIT",
 "Type" : "real",
 "BiggerIsBetter" : 0,
 "Name" : "JIT Compile time"
 },
 {
 "TestSuiteName" : "GCC/LLC",
 "Type" : "string",
 "BiggerIsBetter" : 0
 }]
}
There are new entities for “run options” and “test parameters”. “Run options” are used for compilation/execution of all tests. Test parameters
are supplied for each individual test that can be executed several times with different parameters during one run (e.g. different data sets).

Open Questions
Migration

Currently testsuite name is unique. New scheme allows to define multiple “fields description” files for the same test suite, resulting in
different data set for the same testsuite.
So there was change of testsuite table and migration from old database structure is impossible.
Another problem is modification of fields descriptions (new versions with new fields, etc.). If user want to save data, support for easy
migration of data into new table might be required. It is subject to future improvements.

LNT RFC: LNT/Test-suite Test Parameters
Goals

●​ Global run option for the test suite run
●​ Parameterization of individual tests (repeat test with different parameters during one run).

Proposal
Global run options are added to LNT using command-line option “--run-options=”, that specifies path to file with run options. Test
parameterization is required to analyze influence of test properties on benchmarking metrics.
Test parameters are described in file, that is added using variable FILEPARAMS in TestSuite makefiles. LLVM testsuite Makefile.programs
and report modifications are required to repeat same test multiple times. Now report of TestSuite has test parameters which are added to
name of test.

For example,
Program CC CC_Time CC_Real_Time Exec Exec_Time Exec_Real_Time

MultiSource/Benchmarks/7zip/7zip-benchmark.(-analyzer-no-eag
erly-trim-egraph -H) * 61.148 64.6735 pass 0 0.0004

MultiSource/Benchmarks/7zip/7zip-benchmark.(-fblocks) * 61.16 64.6672 pass 0 0.0006

MultiSource/Benchmarks/BitBench/drop3/drop3.(-analyzer-no-ea
gerly-trim-egraph -H) pass 0.056 0.0659 pass 0.26 0.2625

MultiSource/Benchmarks/BitBench/drop3/drop3.(-fblocks) pass 0.056 0.0659 pass 0.26 0.2625

MultiSource/Benchmarks/BitBench/five11/five11.(-analyzer-no-e
agerly-trim-egraph -H) pass 0.084 0.0908 pass 1.636 1.6395

MultiSource/Benchmarks/BitBench/five11/five11.(-fblocks) pass 0.084 0.0908 pass 1.636 1.6395

MultiSource/Benchmarks/BitBench/uudecode/uudecode.(-analyze
r-no-eagerly-trim-egraph -H) pass 0.056 0.071 pass 0.072 0.0751

MultiSource/Benchmarks/BitBench/uudecode/uudecode.(-fblocks
) pass 0.056 0.071 pass 0.072 0.0751

MultiSource/Benchmarks/BitBench/uuencode/uuencode.(-analyze
r-no-eagerly-trim-egraph -H) pass 0.06 0.0747 pass 0.008 0.0128

MultiSource/Benchmarks/BitBench/uuencode/uuencode.(-fblocks
) pass 0.06 0.0747 pass 0.008 0.0128

MultiSource/Benchmarks/Bullet/bullet.(-analyzer-no-eagerly-trim
-egraph -H) * 40.572 42.5645 * 0 0.0003

MultiSource/Benchmarks/Bullet/bullet.(-fblocks) * 40.54 42.5571 * 0 0.0006

LNT parses report and stores test parameter values into database. Database structure is described earlier.

Status
There is single patch combining all changes: database structure changes, new “summary” table showing current results without comparison
with previous runs, support for global run option, test parameters files.

Screenshots
Simple tests (standard nts)

Nightly tests

Run options

Test parameters

	LNT RFC: LNT/Test-suite support for custom metrics and test parameterization
	LNT/Test-suite support for custom metrics
	Goal
	Analysis of current Database
	
	Proposal
	Open Questions

	
	
	LNT RFC: LNT/Test-suite Test Parameters
	Goals
	Proposal

	Status
	Screenshots

