
Q1. What is React.js and how does it differ from other JavaScript 
frameworks? 

Ans. A JavaScript package called React.js is used to create user interfaces. 
By presenting a component-based method of development, it differentiates 
from existing JavaScript frameworks. React enables developers to 
deconstruct the user interface into reusable components that may be 
combined to build complex UI architectures. React is more adaptable and 
compatible with other libraries and ongoing projects than previous frameworks 
because it just concentrates on the view layer. Additionally, React makes use 
of a virtual DOM, which enhances rendering performance by effectively 
updating just the UI elements that are required. 

Q2. Explain the concept of virtual DOM in React.js and its advantages. 

Ans. A simplified version of the real DOM stored in memory is the virtual DOM 
in React.js. It serves as a mediator between state changes in the application 
and rendering in the browser. React generates a new virtual DOM tree 
whenever the state of the application is changed, compares it to the old one, 
and determines the bare minimum of changes required to update the actual 
DOM. Performance is enhanced by this method by minimising the number of 
direct modifications of the real DOM. Additionally, by abstracting away the 
difficulties of manual DOM manipulation and supplying a more declarative 
approach to define UI modifications, the virtual DOM provides a more 
straightforward programming model. 

Q3. What are the key features of React.js that make it popular for 
building user interfaces? 

Ans. React.js has a number of essential characteristics that make it popular 
for creating user interfaces. The ability for developers to design modular, 
independent UI components that can be utilised across the programme is one 
of its key features. Performance is improved via React's virtual DOM, which 
effectively refreshes only the UI components that are required. Applications 
are simpler to understand and maintain thanks to their unidirectional data flow, 
which also simplifies state management. Additionally, React supports 
server-side rendering for improved initial loading times and SEO. Lastly, a 
wide range of extra features and community support are offered by the 
enormous ecosystem of React frameworks and tools. 

Q4. How does React.js enable code reusability and component-based 
development? 



Ans. Through its component architecture, React.js supports component-based 
development and code reuse. Reusable UI components can be made by 
developers by encapsulating their features, look, and current state. These 
elements can be combined to create complex user interfaces, encouraging 
modular development and code reuse. With React's component-based 
approach, developers may better maintainability, isolate concerns, and build 
libraries of reusable components that can be applied to many projects. 

Q5. What is JSX in React.js, and why is it used? 

Ans. The JavaScript syntax used in React.js has been extended with JSX. It 
enables programmers to combine the logic and display of components into a 
single file and create HTML-like code directly within JavaScript. In React, the 
structure and appearance of components are defined using JSX, which makes 
it simpler to see and comprehend the UI. React is able to efficiently construct 
and update the relevant virtual DOM elements thanks to the transformation of 
JSX into ordinary JavaScript function calls. 

Q6. How do you define components in React.js? 

Ans. Both function components and class components can be used to define 
components in React.js. Function components are described as JavaScript 
functions that take input in the form of attributes (props) and return the JSX 
corresponding to the component's user interface (UI). On the other hand, 
class components are specified as ES6 classes that extend the 
React.element class. The render() method, which returns the JSX 
corresponding to the component's UI, is a must for class components. For 
handling component updates and interactions, function and class components 
can both have internal states and lifecycle methods. 

Q7. Explain the lifecycle methods in React.js and when they are invoked. 

Ans. The lifecycle methods in React.js are called at various times during a 
component's lifespan. ComponentDidMount, ComponentDidUpdate, 
ComponentWillUnmount, and ShouldComponentUpdate are examples of 
common lifecycle methods. componentDidMount is appropriate for initialising 
external libraries or obtaining data because it is invoked after the component 
is mounted to the DOM. After the component's update is reflected in the DOM, 
componentDidUpdate is called to allow for any additional data fetching or side 
effects. Just before the component is removed from the DOM, 
componentWillUnmount is called to enable cleanup or resource release. 
shouldComponentUpdate returns a boolean value that indicates if the update 
should be performed, which is used to regulate how often the component is 



rendered. These lifecycle management techniques offer hooks for controlling 
component behaviour at various junctures in its lifespan. 

Q8. What is the purpose of state in React.js, and how is it different from 
props? 

Ans. Data that can change within a component is managed and stored using 
state in React.js. It enables a component to keep track of dynamic values and 
represents the internal state of the component. The setState() method allows 
for the updating of state, which causes the component to be re-rendered. 
Props are used, on the other hand, to transfer data from a parent component 
to its child components. The child components cannot change or alter props 
because they are read-only. They offer a means to modify and customise child 
components and are transmitted from the parent component. 

Q9. How do you handle events in React.js? (Important interview questions 
for react js) 

Ans. The JSX syntax used in React.js allows you to attach event handlers to 
elements. React defines event handlers as methods inside the component 
class. For instance, you could create a function called handleClick() and then 
set it to the button element's onClick attribute to handle button click events. 
You can use setState() inside the event handler to get at and change the 
component's state. Additionally, React has cross-browser compatible synthetic 
events, and you can use event properties like event.target.value to manage 
form inputs or event.preventDefault() to override an event's default behaviour. 

Q10. What is the significance of keys in React.js when rendering lists? 

Ans. Keys are important when rendering lists of components in React.js. A 
distinct key prop should be assigned to each item in a list. The key aids React 
in effectively determining which items have been added, updated, or removed 
from the list. React uses the keys to optimise the rendering process when a 
list is re-rendered by updating only the essential components rather than 
re-rendering the full list. When dealing with dynamically changing lists, it 
enhances performance and aids in accurately maintaining the component's 
state. 

Q11. Explain the concept of lifting state up in React.js. 

Ans. The lifting state up approach of React.js allows you to transfer shared 
state from several child components to their shared parent component. The 
parent component can then give the state and required callback methods to 
the child components as props, making it the sole source of truth for the 



shared state. Through the parent component, this architecture enables 
communication and state synchronisation amongst the child components. 
Better data flow is encouraged by lifting state up, which also makes it easier to 
handle shared state in React applications. 

Q12. How do you pass data between parent and child components in 
React.js? 

Ans. Data can be passed between parent and child components in React.js 
using props. When rendering the child components, the parent component 
can specify and set the values of props. The provided data can then be 
accessed and used by the child components by referencing the props. The 
modifications can be passed down to the child components by changing the 
props in the parent component. This will cause the child components to 
re-render and update their UI as necessary. Proper and controlled data flow in 
React.js apps is made possible by this unidirectional data flow. 

Q13. What is the role of refs in React.js, and when would you use them? 

Ans. In React.js, references offer a mechanism to directly access and interact 
with DOM elements or components. They are primarily utilised when it 
becomes necessary to access or modify a particular element or component 
outside of the normal data flow. Refs can be retrieved within the component 
using ref.current and assigned to elements using the ref property. They come 
in handy for situations like handling focus, starting animations or integrating 
third-party libraries, and imperative DOM operations. However, it is advised to 
utilise refs rarely as they can circumvent the standard React data flow and 
reduce the declarativeness of the code. 

Q14. Explain the concept of controlled components in React.js. 

Ans. React's controlled components.In js components, the state of form 
elements like checkboxes and input fields determines their values. Any 
changes to the value of the form element are handled by callbacks or event 
handlers, and the component's state becomes the only reliable source for the 
value. This makes it simpler to manage and edit form data because it gives 
React complete control over the component's state and guarantees that the UI 
and component state are always in sync. 

Q15. How do you handle asynchronous operations in React.js? 

Ans. Asynchronous operations in React.js can be handled in a variety of 
ways. For handling asynchronous programming, people frequently utilise 
promises and the async/await syntax. Components can start and manage 



asynchronous processes, such as getting data from an API, by using lifecycle 
methods like componentDidMount, componentDidUpdate, or useEffect. 
Additionally, HTTP requests can be made using built-in Fetch API or libraries 
like Axios. By allocating actions or making use of middleware, state 
management frameworks like Redux or React's Context API can also be used 
to handle asynchronous tasks. 

Q16. What is the role of context in React.js and how is it used? 

Ans. Data can be shared between components in React.js by using context 
rather than directly giving it through props. It enables the development of a 
central data repository that any component inside a given context can access. 
Context is especially helpful for transferring data across nested components 
at different levels, as it eliminates the need for prop drilling. A Provider 
component, which encases the desired components, and a Consumer 
component, which consumes the data, make up the context. All components 
that are Consumers within the same context can access the data by setting 
the value in the Provider. 

Q17. Explain the concept of error boundaries in React.js. 

Ans. In React.js, error boundaries are unique components that are designed 
to detect JavaScript failures during rendering, in lifecycle methods, and in the 
component tree's constructor. These components can gracefully accept 
problems and provide fallback UI by using the componentDidCatch lifecycle 
method rather than crashing the entire application. Error boundaries offer a 
mechanism to enclose parts and manage problems in a controlled way, 
enhancing the application's overall stability and user experience. 

Q18. How do you optimize performance in React.js applications? 

Ans. Performance of React.js applications can be improved using a variety of 
methods. Some typical techniques include lazy loading components or 
resources to lower initial load times, React.memo or shouldComponentUpdate 
to prevent pointless re-renders, virtualization or pagination for lengthy lists or 
tables, and code splitting to enhance bundle size and load times. Improved 
performance in React.js applications can also be achieved by optimising 
network queries, using memoization techniques for complex computations, 
and utilising browser caching and compression. 

Q19. What is React Router and how is it used for routing in React.js? 

Ans. A well-liked library for managing routing in React.js apps is React Router. 
In a single-page application, it offers a declarative approach to specify the 



navigation and URLs of various pages or components. Users can switch 
between multiple views without refreshing the page thanks to React Router, 
which combines Route and Router components to map URLs to specific 
components. It offers a flexible and scalable method for handling application 
routing in React.js by supporting features like nested routes, dynamic routing, 
and route parameters. 

Q20. Explain the concept of higher-order components (HOCs) in 
React.js. 

Ans. React's higher-order components (HOCs).When a component is supplied 
as an input, js functions return an improved version of that component. HOCs 
make it possible to reuse code, share logic, and separate concerns by 
encasing basic operations in a separate component. They enable developers 
to offer context, change component behaviour, or add new props without 
actually changing the original component. HOCs are an effective design 
pattern for expanding component functionality because they enable the 
modular and reusable implementation of issues like authentication, data 
fetching, and conditional rendering. 

Q21. How do you handle authentication and authorization in React.js 
applications? 

Ans. Different methods can be used to handle authentication and 
authorization in React.js apps. Implementing a login form for authentication 
allows you to gather user credentials and transmit them to a backend server 
for validation. Once the user has been verified, the authentication token or 
session data can be saved locally or in cookies. Based on the user's role or 
rights, you can restrict access to particular components or routes for 
authorization. Higher-order components (HOCs) can be used to accomplish 
this or the Context API of React can be used to maintain and communicate 
user authentication and authorisation state throughout the application. 

Q22. What are hooks in React.js and how do they simplify state 
management? 

Ans. You can use state and other React capabilities in functional components 
by using hooks in React.js. They were included in React 16.8 to streamline 
state management and give lifecycle functions a more user-friendly interface. 
Hooks make it simpler to reuse functionality, manage side effects, and 
construct more modular components by allowing you to use and control state 
without writing a class component. Functional components can handle 



component state and lifecycle effects via hooks like useState and useEffect, 
often replacing the requirement for class-based components. 

Q23. Explain the useState hook in React.js and provide an example. 

Ans. React.js's useState hook allows state to be added to functional 
components. Within the scope of the functional component, you can declare a 
state variable and a function to update that value. The array with the current 
state value and a function to update it is returned by the useState hook. To 
useState, you can add a starting value as a parameter. Const [count, 
setCount] = useState(0), for instance, sets the count state variable's initial 
value to 0 and makes the setCount method available to edit it. After that, you 
may use setCount to change the count variable in your component. 

Q24. What is the purpose of useEffect hook in React.js and when would 
you use it? 

Ans. React.js uses the useEffect hook to manage side effects in functional 
components. Making API calls, subscribing to events, or changing the DOM 
are examples of side effects. A function to represent the side effect and an 
optional array of dependencies are the two arguments that useEffect takes. 
You may control when the effect is re-executed by providing dependencies in 
the function, which is run after the component renders. When you need to 
carry out tasks that should happen after the component mounts, updates, or 
unmounts, such as getting data from an API or clearing up resources, the 
useEffect hook comes in handy. 

Q25. How do you implement conditional rendering in React.js? 

Ans. Use the ternary operator in the JSX code or the conditional statements in 
JavaScript to implement conditional rendering in React.js. To conditionally 
render items, components, or text based on specific criteria or state values, 
you can use if-else statements or switch statements. As an alternative, you 
can conditionally render various parts or components by using the ternary 
operator (condition? trueCase: falseCase). You may dynamically determine 
what JSX should be rendered by assessing the condition, giving you the 
ability to modify the rendering depending on logic or user input. 

Q26. Explain the concept of memoization in React.js and its role in 
optimizing performance. 

Ans. Memorization in React.js is the process of caching a function's output 
and using it again if the function is called with the same arguments. You can 
improve efficiency by avoiding needless re-execution of costly calculations or 



computations by memoizing them. React offers the usageA memoized value 
is returned by the memo hook, which requires a function and a dependency 
array. It guarantees that only when the dependencies change is the function 
called. When you wish to avoid doing repeated computations during 
computationally expensive procedures like sophisticated data transformations 
or filtering, memorization can be helpful. 

Q27. How do you perform server-side rendering (SSR) with React.js? 

Ans. Instead of depending solely on client-side JavaScript to generate the 
complete application, server-side rendering (SSR) using React.js entails 
rendering the initial HTML markup on the server and sending it to the client. 
You can utilise Next.js frameworks or React Server Components libraries to 
implement SSR. By enabling you to create components that can be rendered 
on the server and hydrated on the client, these tools offer server-side 
rendering capabilities. SSR guarantees that the application is working even if 
JavaScript is deactivated on the client's end, helps to speed up initial page 
load times, and makes SEO easier. 

Q28. What are the advantages of using Redux with React.js? 

Ans. When Redux is combined with React.js, there are various benefits. First 
of all, it makes it possible to manage and update application state using a 
centralised and predictable state management approach. Redux encourages 
the separation of concerns by keeping component functionality and state 
management apart, resulting in cleaner and easier-to-maintain code. Due to 
the state changes being traceable through a single store, it also makes 
debugging easier. Redux's unidirectional data flow also aids in the 
implementation of time-travel debugging and undo/redo features and 
guarantees that data updates are consistent. 

Q29. Explain the concept of Redux middleware and provide examples of 
popular middleware. 

Ans. As a link between dispatching an action and getting to the reducer, 
Redux middleware serves as a conduit. Prior to the dispatched actions 
reaching the reducers, it permits conducting further processes. Middleware 
can be used for a number of things, like recording actions, dealing with 
asynchronous actions, or transforming the sent actions. Redux Thunk, which 
permits processing asynchronous actions, Redux Saga, which offers 
sophisticated control flow for managing side effects, and Redux Logger, which 
logs dispatched actions and state changes for debugging purposes, are some 
well-known instances of Redux middleware. 



Q30. How do you connect Redux with React.js components? 

Ans. The react-redux library offers a "connect" function to link Redux with 
React.js components. Higher-order components (HOCs), which wrap your 
components and link them to the Redux store, are made using this function. 
The "connect" function establishes the data and actions that the component 
needs from the store by specifying the mapStateToProps and 
mapDispatchToProps functions. The linked component is then given these 
values as props, enabling it to access and modify the Redux state. 

Q31. What is the purpose of actions and reducers in Redux? 

Ans. (Redux actions are straightforward JavaScript objects that express an 
occasion or a desire to alter the state. They have a property called type that 
identifies the kind of action taking place. On the other side, reducers are 
functions that specify how the state should alter in response to various 
operations. They receive the current state and an action as inputs and, 
depending on the action type, return a new state. In order to update the state 
predictably and maintain the immutability of the application's data, actions and 
reducers collaborate. 

Q32. How do you handle asynchronous actions in Redux? 

Ans. Middleware like Redux Thunk or Redux Saga can be used to manage 
asynchronous operations in Redux. You can dispatch functions rather than 
plain action objects using Redux Thunk, enabling asynchronous operations 
within those functions. Based on the asynchronous outcomes, these functions 
can execute API calls, postpone actions, or dispatch multiple actions. On the 
other hand, Redux Saga employs generator functions to control asynchronous 
operations with a more sophisticated control flow, making it possible to handle 
complicated side effects and make testing simpler. 

Q33.Explain the concept of selectors in Redux and their role in 
managing state. 

Ans. Redux selectors are functions that take particular state fragments out of 
the Redux store. They offer a layer of abstraction that encapsulates the state 
structure and permits components to only access the necessary portions of 
the state. Selectors make it simpler to maintain and refactor the state structure 
by structuring and isolating the components from the state shape. Before 
supplying the state to the components, you can compute derived data, apply 
filters, or mix various state components using selectors, resulting in an 
effective and optimised rendering. 



Q34. What are React hooks, and how do they differ from class 
components? 

Ans. Utilising state and other React capabilities in functional components is 
made possible by React hooks, which are functions given by React. Without 
having to create a class, hooks allow functional components to have state and 
lifecycle features comparable to class components. They offer a more 
straightforward and succinct method of controlling state and side effects in 
React components. Hooks make it possible to reuse stateful logic across 
several components, increasing the reuse of code. In contrast, class 
components manage state and side effects using lifecycle methods like 
componentDidMount and componentDidUpdate. Hooks offer a more 
contemporary and adaptable method for creating components in React. 

Q35. Explain the useState hook in React and provide an example. 

Ans. React allows state to be added to functional components using the 
useState hook. Within the confines of the component, it enables developers to 
build and manage state variables. A state variable and a method to update 
that variable are returned by executing useState and providing an initial value. 
The component will automatically re-render when the state changes, and the 
state may be changed using the update function. By initialising a count state 
variable and using the setCount function to increase or decrease it, useState, 
for instance, can be used to establish a counter. 

Q36. What is the purpose of the useContext hook in React and how is it 
used? 

Ans. To access and use values from a context object produced with the 
Context API, use the useContext hook in React. Without explicitly giving props 
at every level of the component tree, context offers a means to transfer data 
between components. Components can access and use the values included 
in the context object within their own scope thanks to the useContext hook. 
The hook returns the current value of the context by using useContext and 
giving the context object, allowing components to access and use the shared 
data. 

Q37. How do you use the useEffect hook to handle side effects in React? 

Ans. React uses the useEffect hook to implement side effects in functional 
components. Tasks like data retrieval, subscriptions, or manually modifying 
the DOM are examples of side effects. You can specify the side effect logic by 
passing a callback function as the first argument to useEffect. By default, the 
hook will run the callback after each render. Dependencies, which are values 



that will cause the side effect to be activated when modified, can be specified 
as the second argument to govern when the side effect should be executed. 
When the component unmounts, you can clean away any resources or 
subscriptions by returning a cleanup method inside the callback. 

Q38. Explain the useReducer hook in React and when would you use it? 

Ans. As an alternative to useState, the useReducer hook in React is used to 
manage state logic that is more intricate. It is based on the idea of a reducer 
function, much to Redux, which controls state. The current state and a 
dispatch function to update the state are returned by the useReducer hook, 
which also accepts a reducer function and a starting state as parameters. The 
reducer function takes the current state and an action, and then it returns a 
new state based on the type of action. Use useReducer when there are 
numerous related values in the state logic or when the next state depends on 
the previous state or action. 

Q39. What is the useRef hook in React and its use cases? 

Ans. React offers a mechanism to build mutable references that last during 
component re-renders using the useRef hook. With useRef, you can save a 
value that doesn't require a re-render every time it changes, unlike with 
ordinary variables. It is frequently used for DOM element access and 
modification as well as for storing values that must be retrieved between 
displays, such as flags or previous state values. UseRef provides a mutable 
ref object that may be used to store any mutable value related to the 
component or set to the ref attribute of a JSX element. 

Q40. How do you implement custom hooks in React and why would you 
use them? 

Ans. React's custom hooks are merely standard JavaScript functions that 
incorporate React hooks. They enable programmers to package up reusable 
logic and distribute it among several components. Custom hooks have names 
that begin with "use," implying that they are hooks in and of themselves. 
Avoiding duplication of code and streamlining the component codebase are 
possible by extracting common state logic into a special hook. Custom hooks 
make it simpler to reuse and maintain shared logic inside your application by 
abstracting complex functionality, such as data retrieval, form handling, or 
local storage management. 

Q41. Explain the useMemo hook in React and its role in performance 
optimization. 



Ans. React's useMemo hook is used to memoize time-consuming 
computations or complicated actions, improving efficiency by avoiding 
needless recalculations. Using a dependency array and a memoization 
function as parameters, useMemo will only recompute the value if any of the 
dependents have changed. If not, it returns the value that was previously 
memorised. This helps to ensure that calculations are only made when 
necessary and prevents components that depend on the memoized value 
from being rendered needlessly when dealing with computationally complex 
operations or expensive data transformations. 

Q42. How do you handle component styling in React? Explain the 
concept of CSS-in-JS. 

Ans. Component styling in React can be managed in a variety of ways. One 
well-liked method is writing CSS styles directly in JavaScript files, or 
CSS-in-JS. Developers can generate and connect styles to their React 
components using JavaScript syntax using CSS-in-JS libraries like Styled 
Components or Emotion. This offers advantages including scoped styles, 
dynamic styles based on component props, and better organisation of styles 
within the component itself. Additionally, CSS-in-JS removes class name 
conflicts and permits simple style composition, making it an effective and 
practical method for styling React components. 

Q43. What are the differences between React.js and React Native? 

Ans. React Native is a JavaScript framework for creating native mobile 
applications, whereas React.js is a JavaScript toolkit for creating user 
interfaces on the web. Target platforms make a big difference: React.js uses 
HTML and CSS to render components for the web browser, whereas React 
Native renders components for native UI elements on iOS and Android. React 
Native employs native platform components, whereas React.js uses HTML 
tags. Although both online and mobile applications still use React's 
overarching component-based design and React's core concepts, this 
distinction necessitates separate development and styling methodologies. 

Q44. Explain the concept of code splitting in React.js and its benefits. 

Ans. In React.js, the term "code splitting" refers to a method of dividing the 
application's packaged JavaScript code into smaller portions that may be 
loaded asynchronously or on-demand as needed. By dividing the code, the 
size of the initial bundle can be decreased, resulting in quicker initial page 
loads. Only the appropriate chunks are loaded when a user navigates to a 
specific route or completes an activity that needs additional code, making the 



user experience more effective and responsive. Code splitting, which 
improves efficiency by minimising the amount of code that must be 
downloaded and performed initially, can be done using tools like Webpack or 
React's built-in dynamic import function. 

Q45. How do you handle internationalisation (i18n) in React.js 
applications? 

Ans. In order to handle internationalisation in React.js apps, localised text 
must be made available, and the application's content must be modified 
according to the user's language or location. Many libraries, such 
react-i18next and react-intl, are available for React and offer complete 
solutions for handling translations, switching between languages, and 
formatting dates, numbers, and currencies. These libraries typically store 
translations in JSON files or key-value pairs and offer React components or 
hooks to handle the display of localised text inside the application. React.js 
apps may easily handle many languages and provide a seamless user 
experience for users from across the world by implementing an i18n library. 

Q46. What are React.js fragments and when would you use them? 

Ans. Developers can combine numerous items using React.js fragments 
without adding a wrapper element. When showing a list of items or when you 
need to return several elements from a component without adding extra 
markup to the DOM, you can utilise fragments. By employing fragments in 
place of a container element like a div, you can logically group elements 
together while maintaining the desired DOM structure. By minimising the 
amount of extraneous items in the generated output, fragments enhance 
efficiency. This could lead to a lighter DOM and possibly faster rendering. 

Q47. Explain the concept of lazy loading in React.js and how it improves 
performance. 

Ans. Delaying the loading of components or resources until they are really 
needed is known as "lazy loading" in React.js. This can be done by loading 
components asynchronously using React's lazy() feature in conjunction with 
dynamic import(). Large applications with several routes or intricate 
component hierarchies benefit from lazy loading because it decreases the 
initial bundle size and speeds up initial loading. Lazy loading improves 
performance by cutting down on the amount of code that must be downloaded 
and parsed beforehand, leading to quicker page loads and improved resource 
utilisation. 

Q48. How do you handle forms validation in React.js? 



Ans. In React.js, forms validation can be handled by leveraging the state and 
event system. Developers typically define the form inputs as controlled 
components, where the value and its changes are controlled by React's state. 
Validations can be performed in response to user input events, such as 
onChange, or when the form is submitted. By capturing the user input and 
validating it against specific criteria or rules, developers can provide feedback 
to the user about the validity of the form. This can be done by updating the 
state to track the validation errors and conditionally rendering error messages 
or applying CSS classes to highlight invalid inputs. Various form validation 
libraries, such as Formik or Yup, provide additional abstractions and utilities to 
simplify and enhance the validation process in React.js applications. 

Q49. What is the purpose of the useCallback hook in React.js and when 
would you use it? 

Ans. The useCallback hook in React.js is used to memoize and optimize the 
creation of callback functions. It is particularly useful when passing callbacks 
to child components, as it ensures that the callback is only created once and 
not recreated on every render. This optimization can improve performance, 
especially in scenarios where the callback is passed as a dependency to other 
hooks or effects. 

Q50. Explain the concept of portals in React.js and how they are used 
for rendering content outside the parent component's DOM hierarchy. 

Ans. Portals in React.js provide a way to render content outside the normal 
DOM hierarchy of a component. It allows you to render a child component's 
content to a different DOM element, typically one that exists outside of the 
current component's parent. This is useful when you need to render content 
into a different part of the document, such as a modal or a tooltip, while still 
maintaining the component's logical structure and state. 

Q51. What is the purpose of the useContext hook in React.js and how is 
it used for managing global state? 

Ans. The useContext hook in React.js is used for accessing context values in 
functional components. It allows you to consume a context created by the 
Context API and access its values without nesting multiple levels of 
components. It simplifies the process of managing global state by providing a 
way to share data across components without prop drilling, making it easier to 
pass and update state between different parts of an application. 

Q52. Explain the concept of error handling in React.js using 
componentDidCatch and ErrorBoundary. 



Ans. Error handling in React.js involves catching and handling errors that 
occur during rendering, lifecycle methods, or event handling. The 
componentDidCatch lifecycle method is used in class components to catch 
and handle errors within the component tree. ErrorBoundary is a higher-order 
component (HOC) or a React component that uses componentDidCatch to 
catch and display errors gracefully. By wrapping components with an 
ErrorBoundary, you can handle and display error messages or fallback UI 
when an error occurs within the component tree. 

Q53. How do you handle routing in React.js without using third-party 
libraries? 

Ans. Routing in React.js can be handled without using third-party libraries by 
utilizing the built-in "react-router-dom" package. It provides a collection of 
routing components and hooks to manage the application's navigation and 
URL handling. The "BrowserRouter" component can be used to define the 
router configuration, while "Route" components are used to define the 
mapping between URLs and components. By using the "useHistory" and 
"useParams" hooks, you can also programmatically navigate and access URL 
parameters within your components. 

Q54. What is the purpose of React fragments and when would you use 
them? 

Ans. React fragments, represented by the "<>...</>" or "<React.Fragment>... 
</React.Fragment>" syntax, are used to group multiple elements together 
without introducing an additional parent element in the DOM. Fragments allow 
you to return multiple elements from a component's render method without 
needing to wrap them in a div or other container element. They are particularly 
useful when you need to render a list of elements or when you want to avoid 
unnecessary elements in the DOM hierarchy. 

Q55. Explain the concept of server-side rendering (SSR) in React.js and 
its benefits. 

Ans. Server-side rendering (SSR) in React.js involves rendering React 
components on the server and sending the pre-rendered HTML to the client. 
This allows search engines and social media crawlers to index and parse the 
content correctly, improving search engine optimization (SEO) and social 
sharing. SSR also provides faster initial page load times, as the server can 
send HTML that is ready to be displayed, reducing the time spent on 
client-side rendering. Additionally, SSR ensures that the initial HTML is 
accessible to users, even if JavaScript is disabled or takes longer to load. 



Q56. How do you handle authentication and authorization in React.js 
applications? 

Ans. Authentication and authorization in React.js applications can be 
implemented by using various techniques. Typically, a combination of backend 
authentication (such as JWT tokens or session cookies) and frontend 
techniques are used. The backend handles the authentication process and 
provides tokens or cookies to the client, which are then stored and managed 
in React's state or browser's local storage. Protected routes can be 
implemented to check the user's authentication status and redirect them 
accordingly. Additionally, authorization can be managed by storing user roles 
or permissions in the authentication tokens or cookies and using them to 
restrict access to certain components or routes. 

Q57. What are the benefits of using TypeScript with React.js? 

Ans. Using TypeScript with React.js brings several benefits. TypeScript is a 
statically-typed superset of JavaScript that provides compile-time type 
checking, which helps catch errors and improve code quality during 
development. With TypeScript, you can define types for props and state in 
React components, making it easier to understand and maintain the 
codebase. TypeScript's autocompletion and type inference capabilities 
enhance productivity and make refactoring safer. Additionally, TypeScript 
offers excellent tooling support, such as IDE integrations and documentation 
generation, which aid in code navigation and understanding. Overall, 
TypeScript improves the robustness, scalability, and maintainability of React.js 
applications. 

Q58. How do you handle code splitting and lazy loading in React.js 
using dynamic imports? 

Ans. To handle code splitting and lazy loading in React.js, you can use 
dynamic imports. Dynamic imports allow you to split your code into smaller 
chunks that are loaded only when needed. By using the "import()" function or 
React.lazy(), you can dynamically import components or modules 
asynchronously. This helps reduce the initial bundle size and improves the 
performance of your application by loading code on-demand, especially for 
larger applications with complex UI. 

Q59. Explain the concept of reconciliation in React.js and how it helps in 
efficient rendering. 

Ans. Reconciliation in React.js is the process of comparing the previous and 
current states of a component's UI hierarchy and efficiently updating the DOM 



with only the necessary changes. React uses a virtual DOM to perform this 
comparison and minimise actual updates to the real DOM, which can be 
computationally expensive. By performing a diffing algorithm, React identifies 
the differences and updates only the affected parts of the UI, resulting in 
efficient rendering and better performance. 

Q60. How do you handle data fetching and API calls in React.js? 

Ans. Data fetching and API calls in React.js can be handled using various 
methods. The most common approach is using the "fetch" API or "axios" 
library to make HTTP requests to an API endpoint. You can fetch data in 
lifecycle methods like "componentDidMount" or "useEffect" hooks. To manage 
state and asynchronous data, you can use the React state or useReducer 
hooks, and update the UI accordingly when the data is fetched or updated. 
Additionally, libraries like "redux-thunk" or "react-query" provide more 
advanced solutions for handling data fetching and caching. 

Q61. What are the differences between controlled and uncontrolled 
components in React.js? 

Ans. Controlled components in React.js are components where the 
component's state is controlled by React, meaning the component receives its 
value via props and notifies changes through callbacks. Developers have full 
control over the component's behaviour and can implement validation and 
perform actions upon changes. On the other hand, uncontrolled components 
have their state managed by the DOM itself, and the data can be accessed 
using refs. Uncontrolled components are useful when you need to access 
form values imperatively or work with non-React libraries. Controlled 
components provide a more predictable and controlled approach to managing 
component state. 

Q62. Explain the purpose of the useMemo hook in React.js and when 
would you use it? 

Ans. The useMemo hook in React.js is used to memoize expensive 
computations and prevent unnecessary recalculations. It takes a function and 
a dependency array as inputs and returns the memoized value. By wrapping a 
computation in useMemo, React will only recompute the value when the 
dependencies change. This optimization is beneficial for complex calculations 
or expensive operations that don't need to be performed on every render. 
useMemo improves the performance of the application by avoiding 
unnecessary computations and re-rendering of components. 

Q63. How do you implement drag-and-drop functionality in React.js? 



Ans. Implementing drag-and-drop functionality in React.js can be achieved 
using the HTML5 drag and drop API or third-party libraries like "react-dnd" or 
"react-beautiful-dnd." With the HTML5 API, you would need to handle events 
like "dragstart," "dragenter," "dragover," and "drop" to manage the 
drag-and-drop behaviour. Third-party libraries provide a higher-level 
abstraction and allow you to define draggable and droppable components, 
handle drag events, and update the state accordingly. These libraries provide 
more flexibility and features for implementing complex drag-and-drop 
interactions in React.js applications. 

Q64. What are the best practices for optimising performance in React.js 
applications? 

Ans. Some best practices for optimising performance in React.js applications 
include minimising re-renders by using shouldComponentUpdate or 
React.memo, utilising code splitting and lazy loading for efficient bundle 
loading, implementing proper data fetching and caching mechanisms, 
optimising images and assets, using production build optimizations like 
minification and compression, and using performance monitoring tools to 
identify and address performance bottlenecks. Additionally, avoiding 
unnecessary state updates, using key props correctly, and using libraries and 
techniques like memoization or virtualization can further enhance the 
performance of React.js applications. 

Q65. Explain the concept of CSS modules in React.js and how they help 
with styling. 

Ans. CSS modules in React.js provide a way to encapsulate CSS styles 
locally within individual components. CSS modules automatically generate 
unique class names, ensuring that styles are isolated to the component they 
are applied to, avoiding global style conflicts. By importing CSS modules into 
React components, you can access and apply the styles using regular class 
names. This approach enhances maintainability, reusability, and modularity by 
encapsulating styles within components, making it easier to reason about and 
update styles without affecting other parts of the application. 

Q66. How do you handle forms and form validation in React.js using 
libraries like Formik or react-hook-form? 

Ans. Libraries like Formik and react-hook-form simplify form handling and 
validation in React.js. Formik provides a higher-level API for managing form 
state, handling form submission, and validating form inputs. It integrates well 
with React components and supports features like field-level validation, 



form-level validation, and error handling. react-hook-form also offers a 
lightweight and performant solution for form handling, emphasising 
uncontrolled form inputs and leveraging the browser's native form validation 
capabilities. Both libraries provide utilities and hooks to streamline the process 
of handling forms and form validation in React.js applications. 

Q67. What is the purpose of the React Context API and how does it differ 
from Redux? 

Ans. The React Context API is used for managing global state and sharing 
data between components without having to pass props explicitly through the 
component tree. It provides a way to create a context, define a provider 
component, and consume the context using the useContext hook or context 
consumer. The Context API is suitable for smaller-scale applications or cases 
where the state needs to be shared between a few components. Redux, on 
the other hand, is a more robust state management library for larger-scale 
applications, providing a predictable state container and enabling centralised 
state management with concepts like actions and reducers. Redux offers 
additional features like middleware, time-travel debugging, and a rich 
ecosystem of extensions and tools. 

Q68. How do you handle state management in large-scale React.js 
applications? 

Ans. In large-scale React.js applications, state management is often handled 
using libraries or frameworks such as Redux or MobX. These tools provide a 
centralized store to manage application state and enable predictable state 
updates through actions and reducers. By separating the state from the UI 
components, it becomes easier to manage and share data across different 
parts of the application, making it more scalable and maintainable. 

Q69. Explain the concept of higher-order components (HOCs) and how 
they are used in React.js. 

Ans. Higher-order components (HOCs) in React.js are functions that take a 
component as an argument and return an enhanced version of that 
component. HOCs allow for code reuse and encapsulation of common logic 
that can be shared across multiple components. They enable cross-cutting 
concerns like authentication, data fetching, or styling to be applied to 
components without modifying their implementation. HOCs are created by 
composing components using functions like "connect" in Redux or 
"withRouter" in React Router, providing additional props or behavior to the 
wrapped component. 



Q70. How do you handle animation and transitions in React.js? 

Ans. Animation and transitions in React.js can be handled using CSS 
transitions, CSS animations, or JavaScript-based animation libraries like 
React Transition Group or React Spring. CSS transitions allow for smooth 
property changes over a specified duration, while CSS animations provide 
more complex and timeline-based animations. JavaScript-based libraries offer 
greater control and flexibility for creating advanced animations. React's 
lifecycle methods and hooks can be used to trigger animations based on 
component state or events, and CSS classes or inline styles can be 
manipulated to apply the desired animation effects. 

Q71. What are the benefits of using styled-components in React.js for 
styling? 

Ans. Styled-components is a library in React.js that allows developers to write 
CSS styles directly in their JavaScript code. The benefits of using 
styled-components include improved modularity, component-level styling, and 
easier theming. With styled-components, styles are encapsulated within the 
component itself, reducing the chances of class name collisions and making it 
easier to reason about the styles. It also enables the creation of reusable 
styled components and promotes a more cohesive and maintainable 
codebase. Additionally, styled-components support dynamic styling based on 
props, making it convenient for theming or handling conditional styles. 

Q72. Explain the concept of code reusability in React.js and how it is 
achieved. 

Ans. Code reusability in React.js refers to the practice of writing components 
or functions that can be used in multiple parts of an application. It is achieved 
through the creation of reusable components and the extraction of common 
logic into separate functions or custom hooks. By designing components with 
a focus on reusability, developers can reduce duplication, improve 
maintainability, and enhance productivity. Techniques such as props, 
composition, and context can be leveraged to create reusable building blocks 
that can be easily integrated into different parts of the application. 

Q73. How do you handle testing in React.js applications? What testing 
libraries or frameworks do you prefer? 

Ans. Testing in React.js applications can be done using various testing 
libraries and frameworks like Jest, Enzyme, or React Testing Library. Jest is a 
popular choice as it provides built-in support for testing React components, 
along with features like snapshot testing and mocking. Enzyme offers 



additional utilities for testing component behaviours and interactions. React 
Testing Library focuses on testing the application from the user's perspective, 
promoting best practices for testing accessibility and ensuring components 
work as expected in different scenarios. The choice of testing library or 
framework depends on the specific needs and preferences of the project and 
the testing approach being followed. 

Q74. What is the purpose of the React DevTools extension and how can 
it be used for debugging? 

Ans. The React DevTools extension is a browser extension that allows 
developers to inspect and debug React component hierarchies. It provides a 
set of tools to examine component props, state, and context, as well as 
inspect the virtual DOM tree. The React DevTools extension enables 
developers to track component updates, identify performance bottlenecks, 
and diagnose issues in the application's rendering and state management. By 
examining component hierarchy and inspecting the associated data, 
developers can gain valuable insights into how the application is behaving and 
make informed debugging decisions. 

Q75. How do you handle cross-origin resource sharing (CORS) in 
React.js applications? 

Ans. Cross-origin resource sharing (CORS) in React.js applications is handled 
on the server-side rather than in the React.js code itself. CORS involves 
configuring the server to include appropriate response headers that allow or 
restrict cross-origin requests. On the client-side, React.js applications can 
handle CORS-related errors by handling the corresponding HTTP status 
codes or using libraries like Axios to make HTTP requests, which provide 
options for handling CORS. It's important to ensure the server is properly 
configured to allow cross-origin requests and handle CORS-related security 
considerations. 

Q76. Explain the concept of React hooks rules and best practices. 

Ans. React hooks are functions that allow functional components to access 
state and lifecycle features previously available only in class components. 
React hooks follow a set of rules and best practices to ensure correct usage. 
Some key rules include only calling hooks at the top level of a component or 
custom hook, not calling hooks conditionally, and always calling hooks in the 
same order. It is recommended to follow the rules and best practices outlined 
in the React documentation to avoid issues with hooks and maintain 
consistent behaviour and performance in React.js applications. 



Q77. How do you handle pagination in React.js applications? 

Ans. Pagination in React.js applications can be handled by managing the 
current page and the number of items to display per page in the component's 
state. When rendering a list or table, the component can slice the data based 
on the current page and items per page, and render only the relevant portion. 
Additionally, pagination controls or a component can be implemented to allow 
users to navigate between pages. The component's state can be updated 
accordingly when the user interacts with the pagination controls, triggering a 
re-rendering of the relevant data based on the updated page information. 

Q78. What is the role of Redux-Saga in React.js applications and how 
does it handle asynchronous actions? 

Ans. Redux-Saga is a middleware library for Redux that provides an 
alternative approach to handling asynchronous actions. It uses ES6 
generators to make handling complex asynchronous flows more manageable 
and maintainable. Redux-Saga intercepts Redux actions and allows 
developers to define sagas, which are generator functions that encapsulate 
the logic for handling asynchronous actions. Sagas can listen to specific 
actions, perform asynchronous tasks like API calls or side effects, and 
dispatch new actions to update the Redux store. This decoupling of 
asynchronous logic from the components can result in more testable, 
reusable, and predictable code. 

Q79. Explain the concept of component composition in React.js and its 
benefits. 

Ans. Component composition in React.js refers to the practice of building 
complex user interfaces by combining smaller, reusable components. It allows 
developers to break down the UI into smaller, manageable pieces, each 
responsible for a specific functionality or visual representation. This modular 
approach promotes code reusability, maintainability, and scalability. By 
composing components together, developers can create more complex UI 
structures while keeping the codebase organized and easy to understand. 
Additionally, component composition enables easy testing, as individual 
components can be isolated and tested independently. 

Q80. How do you handle data persistence in React.js applications using 
localStorage or cookies? 

Ans. In React.js applications, data persistence can be achieved using 
localStorage or cookies. localStorage provides a simple key-value storage 
mechanism in the browser, allowing developers to store and retrieve data on 



the client-side. The data stored in localStorage remains even after the user 
closes the browser. Cookies, on the other hand, are small pieces of data 
stored by the browser and sent with each subsequent request to the server. 
They can be set with an expiration date and can be accessed by both the 
client and the server. To handle data persistence, you can use the 
localStorage or cookies APIs provided by the browser, storing the required 
data as strings and converting it as needed. 

Q81. What are the benefits of using React.js in a single-page application 
(SPA) compared to traditional multi-page applications? 

Ans. Using React.js in a single-page application (SPA) offers several benefits 
compared to traditional multi-page applications. SPAs built with React provide 
a smoother and more seamless user experience as they eliminate page 
reloads. React's virtual DOM efficiently updates and renders only the 
necessary components, resulting in improved performance. Additionally, 
React's component-based architecture allows for better code organization, 
reusability, and maintainability. SPAs also enable faster navigation, as they 
can dynamically load content without requiring a full page refresh. 
Furthermore, React's ecosystem provides numerous libraries and tools 
specifically designed for SPAs, enhancing developer productivity. 

Q82. How do you handle SEO optimization in React.js applications? 

Ans. SEO optimization in React.js applications can be achieved by 
implementing server-side rendering (SSR) or using techniques like 
prerendering or dynamic rendering. SSR involves rendering the React 
components on the server and sending the fully rendered HTML to the client, 
which improves search engine crawlers' ability to index the content. 
Prerendering generates static HTML files for each route in the application, 
which can be served directly to the client, allowing search engines to index the 
content. Dynamic rendering involves serving different versions of the 
application to search engines and users, ensuring that search engines receive 
fully rendered content while users interact with the client-side application. 

Q83. Explain the concept of code splitting and lazy loading in React.js 
using React.lazy and React.Suspense. 

Ans. Code splitting and lazy loading in React.js allow for more efficient loading 
and rendering of components, improving performance. Code splitting involves 
breaking down the application's JavaScript bundle into smaller chunks, which 
can be loaded on-demand. This reduces the initial bundle size and allows 
components to be loaded only when they are needed. React.lazy is a built-in 



React feature that enables lazy loading of components. It allows you to 
dynamically import components using a function that returns a Promise. 
React.Suspense is used to handle the loading state while the requested 
component is being fetched. It allows you to display fallback content, such as 
a loading spinner, until the component is fully loaded and ready to be 
rendered. 

Q84. How do you handle security concerns in React.js applications, 
such as cross-site scripting (XSS)? 

Ans. Handling security concerns, including cross-site scripting (XSS), in 
React.js applications involves implementing proper security measures. 
React.js provides built-in protection against XSS attacks by default. It 
automatically escapes any user input rendered in the components, preventing 
it from being executed as malicious code. However, it is still important to 
follow security best practices, such as using safe APIs for user input, 
validating and sanitising data on the server-side, and implementing Content 
Security Policies (CSP) to restrict the execution of unauthorised scripts. 
Additionally, using secure communication protocols (HTTPS) and keeping all 
dependencies up to date can further enhance the security of React.js 
applications. 

Q85. What are the differences between functional components and class 
components in React.js? 

Ans. Functional components and class components are two types of 
components in React.js. Class components are created using JavaScript 
classes and extend the React.Component class. They have lifecycle methods, 
such as componentDidMount and componentDidUpdate, and can hold state 
using this.state. Functional components, on the other hand, are defined as 
JavaScript functions and do not have their own lifecycle methods or state. 
They are simpler and easier to understand, making them a preferred choice 
for many developers. However, with the introduction of React Hooks, 
functional components can now also hold state and utilise lifecycle-like 
functions using hooks like useState and useEffect. Hooks have provided a 
more concise and flexible way of managing state and lifecycle in functional 
components. 

Q86. Explain the concept of memoization in React.js and how it 
improves performance. 

Ans. Memoization in React.js is a technique used to optimise the rendering 
process by caching the results of expensive computations or function calls. 



With memoization, the output of a function is cached based on its input 
parameters. When the function is called again with the same input, instead of 
recomputing the result, the cached value is returned, saving computational 
resources and improving performance. In React.js, the useMemo hook is used 
for memoization. It allows you to memoize the value of a computation and 
only recalculate it when the dependencies change. This is particularly useful 
when dealing with heavy calculations, complex data transformations, or 
expensive API calls within components. 

Q87. How do you handle data fetching and caching in React.js using 
libraries like React Query or Apollo Client? 

Ans. Libraries like React Query and Apollo Client provide powerful tools for 
handling data fetching and caching in React.js applications. React Query 
simplifies data fetching by abstracting away the boilerplate code involved in 
making API requests, caching the results, and handling optimistic updates. It 
provides hooks and utilities for managing the state of asynchronous data and 
seamlessly integrates with React's rendering and lifecycle. Apollo Client, on 
the other hand, is specifically designed for fetching and managing data from 
GraphQL APIs. It provides a declarative approach to data fetching, caching, 
and real-time updates. Both libraries handle data caching automatically, 
reducing unnecessary network requests and improving application 
performance. 

Q88. What are the benefits of using Redux Toolkit in React.js 
applications? 

Ans. Redux Toolkit is a popular library that simplifies the process of managing 
state in React.js applications using Redux. It provides a set of opinionated 
utilities and abstractions that streamline the Redux development experience. 
Redux Toolkit includes features like the createSlice function, which reduces 
the boilerplate code required to define Redux actions and reducers. It also 
integrates the Redux DevTools extension for easy debugging and 
time-traveling. Additionally, Redux Toolkit promotes best practices such as 
immutability and helps prevent common mistakes, improving the overall 
development workflow. It offers a smoother learning curve for beginners and 
provides a more efficient and productive development experience for 
experienced Redux users. 

Q89. Explain the concept of performance optimizations in React.js, such 
as memoization and memoizing selectors. 



Ans. Performance optimizations in React.js involve techniques to improve the 
rendering efficiency of components. Memoization, as mentioned earlier, helps 
optimize expensive computations or function calls by caching their results and 
avoiding unnecessary recalculations. Memoizing selectors is another 
optimization technique that involves caching the results of complex data 
transformations or derived data. By memoizing selectors, you can ensure that 
the derived data is only recomputed when the input data changes. This 
reduces redundant calculations and improves performance. Libraries like 
reselect are commonly used in React.js to implement memoized selectors. 
Additionally, using shouldComponentUpdate lifecycle method, 
PureComponent, or React.memo can prevent unnecessary re-renders of 
components by implementing shallow equality checks on props or state. 

Q90. How do you handle state synchronisation between components in 
React.js using Redux? 

Ans. Redux is a state management library that helps handle state 
synchronisation between components in React.js. It follows a centralised 
approach, where the entire application state is stored in a single JavaScript 
object called the "store." Components can access and modify the state using 
actions, which are dispatched to the store. Reducers, pure functions, specify 
how the state should change in response to actions. Components can 
subscribe to the store and receive updates whenever the state changes, 
ensuring consistent and synchronised data across the application. 

Q91. What is the role of the useEffect hook in React.js and how does it 
handle side effects? 

Ans. The useEffect hook in React.js is used to handle side effects in functional 
components. Side effects include tasks like data fetching, subscriptions, or 
manually changing the DOM. By specifying dependencies as the second 
argument of useEffect, developers can control when the effect runs. If the 
dependencies change, the effect is re-run. This allows for efficient handling of 
side effects, avoiding unnecessary re-renders and memory leaks. The cleanup 
function returned by useEffect can be used to perform any necessary cleanup 
before the component is unmounted. 

Q92.Explain the concept of the useCallback hook in React.js and its use 
cases. 

Ans. The useCallback hook in React.js is used to memoize functions, 
preventing unnecessary re-creation of functions in each render cycle. It is 
particularly useful when passing callbacks to child components that rely on 



referential equality for optimization purposes. By wrapping a function in 
useCallback, React ensures that the function reference remains stable unless 
its dependencies change. This optimization can improve performance, 
especially in scenarios where components rely heavily on callback functions. 

Q93. How do you handle routing in React.js using third-party libraries 
like React Router? 

Ans. Third-party libraries like React Router are commonly used to handle 
routing in React.js applications. React Router provides a declarative way to 
define routes and render different components based on the URL. Developers 
can define routes using the Route component and specify the corresponding 
component to render. Additional features such as nested routes, route 
parameters, and query parameters can be utilised to create complex routing 
structures. React Router also provides navigation components like Link and 
useHistory to navigate between different routes. 

Q94. What is the purpose of the useContext hook in React.js and how is 
it used for managing global state? 

Ans. The useContext hook in React.js is used to access and consume a 
context created with the createContext function. Context allows for the 
propagation of values across the component tree without the need to pass 
props explicitly at each level. By using useContext, components can access 
the value provided by the context provider higher up in the tree. This is 
particularly useful for managing global state, where data needs to be shared 
and accessed by multiple components throughout the application. 

Q95. Explain the concept of error handling in React.js using 
componentDidCatch and ErrorBoundary. 

Ans. React.js provides the componentDidCatch lifecycle method and the 
ErrorBoundary component for error handling. When an error occurs during the 
rendering of a component, componentDidCatch is invoked, allowing the 
component to capture the error and display a fallback UI. ErrorBoundary 
components wrap the tree and catch errors from their children, enabling the 
display of alternative content instead of a full application crash. This 
mechanism is useful for handling runtime errors that occur during rendering 
and ensures a better user experience. 

Q96. How do you handle form validation in React.js using libraries like 
Formik or Yup? 



Ans. Libraries like Formik and Yup can be used to handle form validation in 
React.js. Formik simplifies form management by providing utilities for handling 
form state, validation, and submission. It integrates well with Yup, a schema 
validation library, which allows for defining validation rules using a fluent API. 
By combining Formik and Yup, developers can create forms with validation 
logic, handle form submission, and display error messages, providing a robust 
and user-friendly form validation experience. 

Q97. What are the benefits of using TypeScript with React.js, and how 
does it improve developer productivity? 

Ans. Using TypeScript with React.js brings several benefits. TypeScript is a 
statically typed superset of JavaScript, providing type checking and improved 
tooling support. It enhances developer productivity by catching type-related 
errors at compile time, allowing for early bug detection and reducing runtime 
errors. TypeScript enables better code maintainability and refactoring with its 
strong typing and code navigation features. It also provides auto-completion 
and documentation generation, enhancing the development experience and 
making code easier to understand and collaborate on. 

Q98. Explain the concept of React hooks and how they simplify state 
management in functional components. 

Ans. React hooks are functions that allow functional components in React.js 
to have state and lifecycle features. They simplify state management by 
eliminating the need for class components and promoting a more concise and 
functional programming style. The useState hook provides local state 
management, while the useEffect hook handles side effects. Additional hooks 
like useContext, useRef, and useCallback offer functionality for global state, 
references, and memoization, respectively. Hooks enable developers to write 
reusable and modular code, improving code organization and reducing the 
complexity of state management in functional components. 

Q99. How do you handle server-side rendering (SSR) in React.js using 
libraries like Next.js? 

Ans. Libraries like Next.js provide built-in support for server-side rendering 
(SSR) in React.js. With Next.js, developers can create pages and components 
that are rendered on the server and sent as fully rendered HTML to the client. 
This approach improves initial page load performance and search engine 
optimization. Next.js handles the routing, data fetching, and rendering process 
on the server, allowing for dynamic content and seamless navigation. By 
leveraging Next.js, developers can achieve the benefits of SSR without the 



need for complex configuration, making server-side rendering more 
accessible and straightforward. 

Q100. How do you handle data fetching and asynchronous operations in 
React.js using the useEffect hook and libraries like Axios or Fetch API? 

Ans. To handle data fetching and asynchronous operations in React.js, you 
can use the useEffect hook along with libraries like Axios or Fetch API. First, 
import the necessary library (e.g., Axios) and use the useEffect hook to 
specify the side effect of fetching data. Within the useEffect callback function, 
make an asynchronous request using Axios or Fetch API. When the data is 
received, update the state using setState or useState hooks. To avoid 
potential memory leaks, make sure to clean up the effect by returning a 
cleanup function from useEffect, which can cancel pending requests or 
perform any necessary cleanup tasks. By leveraging the useEffect hook and 
libraries like Axios or Fetch API, you can efficiently handle data fetching and 
manage asynchronous operations in your React.js applications. 

 


