Kurvendiskussion
ft(x) = 1/18·x^4 + t/3·x^3
ft'(x) = 2/9·x^3 + t·x^2
ft''(x) = 2/3·x^2 + 2·t·x
Y-Achsenabschnitt ft(0)
1/18·0 + t/3·0 = 0
Nullstellen ft(x) = 0
1/18·x^4 + t/3·x^3 = x^3·(1/18·x + t/3) = 0
x1 = 0
1/18·x + t/3 = 0
x2 = - 6·t
Extremstellen ft'(x) = 0
2/9·x^3 + t·x^2 = x^2·(2/9·x + t)
x1 = 0
2/9·x + t = 0
x2 = - 9/2·t
ft(- 9/2·t) = - 243/32·t^4
ft''(- 9/2·t) = 9/2·t^2 > 0 --> Tiefpunkt
Ortskurve der Extrempunkte
2/9·x + t = 0
t = -2/9·x
f(x) = 1/18·x^4 + (- 2/9·x)/3·x^3 = - 1/54·x^4
Wendestellen ft''(x) = 0
2/3·x^2 + 2·t·x = x·(2/3·x + 2·t) = 0
x1 = 0
2/3·x + 2·t = 0
x2 = - 3·t
ft(- 3·t) = - 9/2·t^4
Ortskurve der Wendepunkte
2/3·x + 2·t = 0
t = - x/3
f(x) = 1/18·x^4 + (- x/3)/3·x^3 = - 1/18·x^4
Skizze
k = 0 bis 2, Schrittweite 0.1