
spatialNavigationSearch API Explained
Written: 2019-11-13, Updated: 2019-11-19

spatialNavigationSearch() is a proposed API to get a next target element to be focused via
directional inputs. It returns a focusable element as a best candidate element in a given
direction. It's only enabled behind a runtime flag (--enable-spatial-navigation) so that it can
be used in specific user agents such as smart TV with remote control and touchless
smartphone. There seems no performance and security issue as it's just get method.

In CSS Spatial Navigation specification, there are several proposed APIs such as DOM
methods, CSS properties and DOM Events. We would like to focus on
spatialNavigationSearch API as the most primitive one here.

See also:

●​ specification, official working draft published in W3C CSS WG.
●​ demo, working with polyfill located in W3C WICG.

Background
Spatial navigation is the ability to navigate between focusable elements based on their
position within a structured document. Spatial navigation is often called 'directional
navigation' which enables 4-ways (top/left/bottom/right) directional navigation. Users are
usually familiar with the 2-way navigation using both 'tab key' for the forward direction and
'shift+tab key' for the backward direction, but not familiar with the 4-way navigation using
arrow keys.

In terms of TV remote control, arrow keys on touchless smartphone and Web accessibility,
the spatial navigation has been a rising important input mechanism in several industries. If
the web could embrace the spatial navigation functionalities in web engines (i.e. Chromium)
and W3C standard APIs, it will be more promising technology for existing products as
mentioned above and various upcoming smart devices.

spatialNavigationSearch WebIDL
enum SpatialNavigationDirection {
 "up",
 "down",
 "left",
 "right",
};
dictionary SpatialNavigationSearchOptions {

https://drafts.csswg.org/css-nav-1/#dom-element-spatialnavigationsearch
https://wicg.github.io/spatial-navigation/demo/#spatialNavSearch

 Node? container;
 sequence<Node>? candidates;
};
partial interface Element {
 Node? spatialNavigationSearch(SpatialNavigationDirection dir, optional
SpatialNavigationSearchOptions options);
};

// An example of spatialNavigationSearch API
// let elm3 = document.querySelector("#elm3");
// elm3.spatialNavigationSearch("right", {container: "container1", candidates: [elm1, elm2,
elm4, elm5]};

spatialNavigationSearch in detail

Basic logic
To properly understand the logic of spatialNavigationSearch, you need to briefly know the
current basic processing model that has already been merged in Blink. With the processing
model, users moves the focus to the next best target via arrow keys.
spatialNavigationSearch is an option that authors can override a default next target to a
changed target when pressing arrow keys.

In the processing model, there are three steps to find a next focus target as follows:

1.​ When the current focused element is a spatial navigation container, a set of
candidate elements to be focused become descendant elements of the container
element.

2.​ When the current focused element has some fully or partially overlapped elements, a
set of candidate elements to be focused become those overlapped elements.

3.​ Otherwise, the current focused element has a set of candidate elements in a given
direction.

Difference with the processing model
spatialNavigationSearch works similar to the processing model (i.e default behaviors when
pressing arrow keys), but the followings describe the difference between the processing
model and spatialNavigationSearch.

1.​ The processing model works recursively when there is no candidate elements in a
nearest spatial navigation container. However, spatialNavigationSearch doesn't work
recursively so it returns null when there is no candidate elements in a nearest spatial
navigation container. Authors can use spatialNavigationSearch APIs in a flexible
ways.

2.​ The processing model considers only visible elements as candidate elements to be
focused. However, spatialNavigationSearch can consider invisible elements (i.e.
offscreen elements) within a scroll container. For the operation, authors can add
those offscreen elements into the candidates parameter.

3.​ The result of processing model could be scrolling when pressing arrow keys.
However, spatialNavigationSearch doesn't do scrolling. In that case
spatialNavigationSearch returns null.

Parameters
spatialNavigationSearch API provides three parameters, though two of those are inside the
options parameter.

●​ dir: It has a trivial role as a mandatory parameter. It could be mapped to each arrow
key.

●​ container: It's an optional parameter. If container is specified, the scope of candidate
elements to be focused is limited within the container. If container is not specified, the
container sets to the nearest spatial naivation container element as a default.

●​ candidates: It's an optional parameter. If candidates is specified, the scope of
candidate elements to be focused is limited among the candidates. If candidates is
not specified, the candidates sets to all the descendant elements of the container.

Note: If the intersection between container and candidates specified in each parameter is
null set, spatialNavigationSearch returns null. It works as intersection, not union of two
parameters.

Sample code
To simply understand the behavior of spatialNavigationSearch() API, the looping example is
shown as follows.

<div id=container>
 <div id="elm1" tabindex="0"></div>
 <div id="elm2" tabindex="0"></div>
 <div id="elm3" tabindex="0"></div>
 <div id="elm4" tabindex="0"></div>
 <div id="elm5" tabindex="0"></div>
</div>

<script>
const ARROW_KEY_CODE = {37: 'left', 38: 'up', 39: 'right', 40: 'down'};
document.addEventListener('keydown', (e) => {
 let key = ARROW_KEY_CODE[e.keyCode];
 let next = e.target.spatialNavigationSearch(key);

 if (next === null) {
 if (key === "right") elm1.focus();
 if (key === "left") elm5.focus();
 e.preventDefault();
 }
});
</script>

The example code works as the followings: (gif image) spatial navigation on any websites

Frequently Asked Questions

Isn’t it enough just using the relevant web frameworks?
Several web frameworks and extensions for the spatial navigation have been provided until
now due to no support from web engines. For examples, js-spatial-navigation made by
Mozilla is one of the frameworks and its quality would be good to support the features of the
spatial navigation. Spotlight library developed by LG is also an instance of the frameworks
for the spatial navigation. However, the support of spatial navigation from web frameworks
has some limits as follows:

●​ Limitation from JS capability
○​ Form elements (slider, text input, etc.), Shadow DOM, OOIPFs
○​ e.g. no way to get the current caret position or the current slider bar for now

●​ Uncertainty on animated pages
○​ With animated object on a web page, Blink SpatNav is better than JS

SpatNav in terms of responsiveness.
●​ Uncertainty on keydown handlers

○​ Author-defined keydown handlers could affect to the existing SpatNav
operation provided by JS SpatNav.

○​ e.g. preventDefault in the author-defined keydown handeler could cancel the
JS SpatNav logic as well.

●​ Inconsistency between several JS frameworks
○​ Several JS SpatNav provides a bit different user experience. (e.g. rules for

next target selection)
●​ Difficult to align native scroll behaviors with SpatNav when moving the focus to

offscreen element
○​ With JS, a bit complex codes are needed to support the offscreen element

management in a scroll container.
●​ Difficult to align the virtual focus management with a11y supports

https://github.com/luke-chang/js-spatial-navigation
https://github.com/enactjs/enact/tree/master/packages/spotlight

○​ The a11y functionality works based on the focus movement, but some JS
SpatNav works with virtual focus.

●​ Performance degradation due to a bit expensive cost of DOM Access whenever
pressing arrow keys

○​ In case of the huge number of focusable elements in a web page, it works
slowly when pressing arrow keys

Spatial navigation seems not a general functionality on the Web. (only
for TV?)

●​ Spatial navigation has a history about for 20 years. First, the feature phone has been
a first citizen of the spatial navigation about ten years ago. Before touch-based
interface, the majority of interface for mobile was the key-based interface. Recently
(as of 2019), KaiOS-based feature phones have been propagated mainly in several
developing countries such as Africa, India and Southeast Asia. The device doesn't
support a touch interface (touchless), so users need to use the arrow keys to select
an item on all applications including the browser.

●​ In the future, the input mechanism for smart devices will be changed to something

like voice command, hand gesture and gaze direction, but the key-based interface
will never disappear, even though it would be used as a secondary method. The
key-based interface used to be evaluated as one of the most intuitive ways with a
strong sense feedback of finger after pushing a key, as if it's inconvenient a
touch-based keyboard without any physical keys. The other industries such as
IVI(Car), AR, game console could be also future citizen of spatial navigation.

I would like to raise an issue or idea about spatial navigation.
●​ Please put any question via the following two links:
●​ Issues in CSS WG for spec issues with css-nav label
●​ Issues in WICG WG for any other issues
●​ Everything for the spatial navigation is welcome! :D

Original link
https://github.com/WICG/spatial-navigation/blob/master/docs/spatialNavigationSearch_expla
iner.md

https://www.kaiostech.com/
https://github.com/w3c/csswg-drafts/labels/css-nav-1
https://github.com/WICG/spatial-navigation/issues
https://github.com/WICG/spatial-navigation/blob/master/docs/spatialNavigationSearch_explainer.md
https://github.com/WICG/spatial-navigation/blob/master/docs/spatialNavigationSearch_explainer.md

	spatialNavigationSearch API Explained
	Background
	spatialNavigationSearch WebIDL
	spatialNavigationSearch in detail
	Basic logic
	Difference with the processing model
	Parameters

	Sample code
	Frequently Asked Questions
	Isn’t it enough just using the relevant web frameworks?
	Spatial navigation seems not a general functionality on the Web. (only for TV?)
	I would like to raise an issue or idea about spatial navigation.

	Original link

