
US ATLAS HTCondor dev meeting notes:
Useful Links:
Indico page for event: https://indico.bnl.gov/event/25916/
Zoom link: https://bnl.zoomgov.com/j/1614360980?pwd=AQm6x3reOaNtEze9H7GjadACjvWaBE.1
Condor release plan: https://htcondor.org/htcondor/release-plan/
Contact us page for HTCondor - Link to Page

26 Nov 2025
-​ Quantize bug?
-​ EP became black hole on condor upgrade (acas0608)
-​ How to set tmp to be inside of condor scratch directory for jobs?

15 Oct 2025

-​ User job executable ended up in uninterruptible sleep, slot was “poisoned” because
cgroup could not be destroyed

-​ STARTD_LEFTOVER_PROCS_BREAK_SLOTS

23 July 2025:

-​ Can use this construct in routes/transforms if you want the biggest/smallest of a number
in an array (useful for setting a floor/ceiling), or in my case to bully the single core Low
memory jobs into requesting a bit more memory, while still letting the bigger requests
pass through unbothered:

max({RequestMemory, 1500}) ← Use this one
min({RequestMemory, 1500}) ← don't use this in this case, but this construct exists and can be used

elsewhere

min/max passed an array, put in an EVALSET, not SET

Useful to keep a copy/record of the original request if overriding:
Copy RequestMemory ActualRequestMemory

--

-​ Command useful for finding CE jobs that are Completed (status 4), but for some reason
are still in the queue, but not running/held/idle/removed or otherwise (zombies!?):

condor_ce_q -constraint "JobStatus == 4" -constraint "EnteredCurrentStatus < (time() - 600)" -af:tj

'FormatTime(EnteredCurrentStatus)'

-​ Command to view CE routes and pre/post transform:

​ condor_ce_job_router_info -config

-​ JIRA ticket for pilot cgroup memory limits: https://its.cern.ch/jira/browse/ATLASPANDA-1251

https://indico.bnl.gov/event/25916/
https://bnl.zoomgov.com/j/1614360980?pwd=AQm6x3reOaNtEze9H7GjadACjvWaBE.1
https://htcondor.org/htcondor/release-plan/
https://htcondor.org/contact/
https://its.cern.ch/jira/browse/ATLASPANDA-1251

25 June 2025:
Condor CE issues (Zach)

-​ Completed jobs are sticking around for a very long time in the condor_ce_q, and this is
causing issues

-​ Might need a followup meeting to view logs and such with Jamie

Setting CONDORCE_MAX_JOBS to lower number works with condor_reconfig, but going to
bigger number seems to need a daemon restart?

Mail list:
usatlas-wbs23-l@lists.bnl.gov
https://lists.bnl.gov/sympa/info/usatlas-wbs23-l

28 May 2025:
Scaling issues for Kaushik

-​ Possible issue? Throttle limit on number of jobs per second, put in to limit queries that
can kill slurm clusters

-​ Fred reports that Kaushik may have solved the problem
-​ Kaushik - there was a (soft) limit on how many jobs on average are sent by

Harvester. Increasing that limit solved the main problem.
-​ COMPLETED_JOB_EXPIRATION was changed (lowered?) from 30 to 10
-​ GRIDMANAGER_JOB_PROBE_RATE condor parameter to be changed (default 5) can probably set it to 20

or even higher
-​ OSG Ticket for this issue:

https://support.opensciencegrid.org/support/tickets/public/40db7c0ac0faace4e90d56c5c
b12da8101460f9540d8dde2d5c3b657c1f46f7d

30 Apr 2025:

Doug: set up a condor cluster where CM, CE is at BNL and workers are located elsewhere
(SLURM HPCs)

-​ https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=RunCmsJobsAtBsc
-​ https://docs.google.com/document/d/1GGOc3pgidfv_qunaKqzjbvKPF8CD_RF30KkqMtw

BC0U/edit?tab=t.0#heading=h.jlzxkv88ic14
-​ Need to follow up in subsequent meeting

https://lists.bnl.gov/sympa/info/usatlas-wbs23-l
https://docs.google.com/document/d/1GGOc3pgidfv_qunaKqzjbvKPF8CD_RF30KkqMtwBC0U/edit?tab=t.0#heading=h.jlzxkv88ic14
https://docs.google.com/document/d/1GGOc3pgidfv_qunaKqzjbvKPF8CD_RF30KkqMtwBC0U/edit?tab=t.0#heading=h.jlzxkv88ic14

Regarding schedd’s not running enough jobs, there are a few potential bottlenecks we’ve seen
-​ MAX_RUNNING_JOBS is a potential first hard limit (check this)
-​ Potentially running out of system memory (plan for ~2MB per running job) for example, if

your target is 15k running jobs from a schedd, plan for 30GB of RAM for the AP
-​ On a higher scale (~29k or so running, depending on your linux system defaults or

config) you may hit default ephemeral port limits. You can check port range with cat
/proc/sys/net/ipv4/ip_local_port_range

-​ I have also seen users accidentally set an artificial limit of running jobs on themselves in
their JDF. This was especially hard to find because it was transient and seemingly only
affected one person

Cgroups (Thanks Aiden)
BASE_CGROUP = htcondor
CGROUP_IGNORE_CACHE_MEMORY = true
CGROUP_MEMORY_LIMIT_POLICY = hard
CGROUP_POLLING_INTERVAL = 5

2 Apr 2025:

On EP drain, it is possible to allow backfill jobs to fill the time during the drain

Yum update on condor package will set the EP to “retirement” status, effectively
draining jobs

-drain Option to condor_off that tells the master if you have a startd to end, do it with a
drain command (-deadline option does not work) canceling condor_off doesn’t cancel
draining

5 Mar 2025:
Cgroups discussion: Email from Aidan:​
I wanted to suggest another topic for discussion regarding jobs implementing cgroups. I created

a program [1] that spawns a child process, assigns it to a cgroup with a memory limit, and

makes the child process allocate a specified amount of memory before sleeping, freeing the

memory, and exiting. When testing the program on the mwt2 condor cluster (24.0.2) I have

observed some interesting behavior. When the child process exceeds the cgroup memory limit

condor evicts the job and puts it on hold. This will occur even if the total memory being used by

the job is less than the value set in the request_memory attribute of the submit file. The job log

claims that the job used the exact amount of memory set in the request_memory attribute i.e

Error from slot1_9@uct2-c581.mwt2.org: Job has gone over cgroup memory limit of 4096

megabytes. Last measured usage: 4096 megabytes. Consider resubmitting with a higher

request_memory.

But I do not believe that is an accurate account of how much memory the job is actually using.

Despite the job being evicted and put on hold however, the parent process (which is in a

separate cgroup as the child process), is kept alive and able to exit on its own. I am not sure how

long the parent process is kept alive after the job has been evicted but I have tested up to 60

seconds after the child process has been killed due to memory limits and the parent process has

been able to exit on its own and files produced by the job (stdout) have been transferred back

to the submit host.

So what I wanted to discuss is if this is the expected behavior of condor and potential issues it

could cause with jobs (i.e the pilot) implementing cgroups.

[1] https://github.com/arosberg/memory_allocator​

-​ possible bug found? TJ will follow up with Greg and others

-​ Files transferred after is expected behavior

RESERVED_MEMORY knob, memory set aside for not condor​

8 JAN 2025:

Ways to kill job without killing pilot using cgroup subgroups - Fred and team working on
this with Greg

Opensearch v2 support included in condor 24.0.3+

Condor ssh to job:
Condor_starter creates sshd subprocess (magic) sends traffic through starter/shadow
connection. Security for this is condor security (Greg is expert on this)

Pnfs issue:
Pnfs inaccessible from within job: looks like user’s jdf was missing something required for the
auth (X509UserProxy)

https://github.com/arosberg/memory_allocator

Job router:
HTCondor-CE job router conversion tool: problem when running from versions of condor that
are too low (no output). Confirmed working in condor 24​

condor_transform_ads -convert:file old_route_file > new_route_file

I found in some cases the “JOB_ROUTER_ROUTE_NAMES = <names>” line was omitted from
the converted file, so I needed to include that line in the final version of the file. Names should
be listed in order they are evaluated, order of the route blocks themselves does not matter.

11 DEC 2024:​

This is what we are doing at MWT2
SIGTERM to kill jobs, SIGKILL after 5 minutes
GRACEFULLY_REMOVE_JOBS = true
MachineMaxVacateTime = 5 * 60

cgroup additions for limiting memory to 1.1x the job request for ATLAS and 3x for non-ATLAS
CGROUP_MEMORY_LIMIT_POLICY​ = custom
CGROUP_HARD_MEMORY_LIMIT_EXPR = ifThenElse(regexp("usatlas[1-4]", Owner), 1.1 *
RequestMemory, 3 * RequestMemory)
CGROUP_SOFT_MEMORY_LIMIT_EXPR = ifThenElse(regexp("usatlas[1-4]", Owner), 1 *
RequestMemory, 1.1 * RequestMemory)

MWT2 testing of cgroups:

1.​ sudo su usatlas1
2.​ condor_submit memory_allocator.submit

​
condor_allocator.submit contains:​

universe = vanilla
executable = memory_allocator
arguments = 1500 30
request_memory = 1024M
log = memory_job.$(Cluster).$(Process).log
output = memory_job.$(Cluster).$(Process).out
error = memory_job.$(Cluster).$(Process).err
should_transfer_files = yes
when_to_transfer_output = ON_EXIT_OR_EVICT
transfer_executable = True
JobPrio = 100000

requirements = regexp("cit2", Machine)

queue​
​
The executable arguments are:

1.​ 1500 is the number of MiB to allocate.
2.​ 30 is the number of seconds to wait after the memory is allocated before exiting

a.​ There is a signal handler that will log a message on SIGINT or SIGTERM and
wait the same amount of seconds before exiting

The memory request is 1024 MiB.
The requirement to run on a machine with a name containing cit2 ensures that the job runs on a
server that is updated to condor 24.0.2.

Judith put the cgroups config related to memory above. The entire contents of
/etc/condor/config.d/02-cnode.conf is:

use role:execute
use feature:partitionableslot

MWT2_CpuUsed ​ = int((CondorLoadAvg / TotalLoadAvg) *
(ifthenelse((TotalLoadAvg < TotalCpus), TotalLoadAvg, TotalCpus)) *
100) / 100.0
MWT2_CpuUsage ​ = ifthenelse(((TotalLoadAvg > 0.0) && (Activity !=
"Idle")), MWT2_CpuUsed, 0)
MWT2_CpuExceeded = (MWT2_CpuUsage > (Cpus + 0.8))
MWT2_CpuMemory​ = int(TotalMemory / TotalCpus)

START = TRUE
HAS_CVMFS = TRUE
TRUST_UID_DOMAIN = TRUE

STARTD_ATTRS = $(STARTD_ATTRS) HAS_CVMFS MWT2_CpuUsed MWT2_CpuUsage
MWT2_CpuExceeded MWT2_CpuMemory

SIGTERM to kill jobs, SIGKILL after 5 minutes
GRACEFULLY_REMOVE_JOBS = true
MachineMaxVacateTime = 5 * 60

cgroup additions for limiting memory to 1.1x the job request for
ATLAS and 3x for non-ATLAS
CGROUP_MEMORY_LIMIT_POLICY​= custom
CGROUP_HARD_MEMORY_LIMIT_EXPR = ifThenElse(regexp("usatlas[1-4]",
Owner), 1.1 * RequestMemory, 3 * RequestMemory)

CGROUP_SOFT_MEMORY_LIMIT_EXPR = ifThenElse(regexp("usatlas[1-4]",
Owner), 1 * RequestMemory, 1.1 * RequestMemory)

DISABLE_SWAP_FOR_JOB = true

IGNORE_LEAF_OOM = false

Opensearch / Adstash

24.0.3/ 23.0.19 includes some improvements to opensearch 2.0 implementation

-​ Possible to run a condor 24.0.3 vm with adstash to talk to 23.X cluster

New for late 23.X 24+ in addition to machine ad they now have singular ad for each EP startd
daemon ad which has aggregate view of whole machine

Looking for overloaded slots

The ATLAS production system occasionally gets two or more processes running on a slot. This
is the script I wrote to detect these bad boys:

#!/bin/sh

EffCut=1.4​
TimeCut=3600​
NumberOfLoops=60​
SleepTime=120

touch large_cpu_loop.txt​
for i in $(eval echo "{1..$NumberOfLoops}")​
do​
 date >> large_cpu_loop.txt​
 condor_q -global usatlas1 usatlas3 -run \​
 -attributes ClusterId GlobalJobId RemoteHost CpusUsage​
 CpusProvisioned JobCurrentStartExecutingDate ServerTime \​
 -autoformat ClusterId GlobalJobId RemoteHost CpusUsage​
 CpusProvisioned JobCurrentStartExecutingDate ServerTime | \​
 sort -n | \​
 awk -v effcut=$EffCut '$7-$6 < timecut {next} $5 ~ /[a-z]/ {next}
$5 == 0 {next} $4/$5 > effcut {print $2 " " $3 " " $4/$5}' \​
 >> large_cpu_loop.txt

 sleep $SleepTime

done

Any suggestions, improvements, corrections sent luehring@iu.edu are welcome.

Other/ Misc.

Can make use of backfill slots for lower priority jobs that get eviction when higher priority jobs
come through. Progress will be lost on evicted jobs

HTCONDOR release schedule
HTCondor Release Plans

Contact us page for HTCondor - Link to Page

mailto:luehring@iu.edu
https://htcondor.org/htcondor/release-plan/
https://htcondor.org/contact/

