For 1 – 4 write the equation for each parabola. $x = \frac{1}{4p} (y - k)^2 + h$ $y = \frac{1}{4p} (x - h)^2 + k$

- 1. The focus is (0,3) and the directrix is y = -1
 - 2. The vertex is (4,2) and it goes through (2, 6) oriented left

3. Goes through (2, 1) (4, 25) and (5, 46)

4. x-intercepts are (-4,0) and (2,0) and y-intercept (0,16)

 $Y = 3x^2-6x+1$

y = How can we find a?

VPOP fails, why?

VPOP fails, why?

$$y = -\frac{1}{12}x^2$$

$$x = \frac{1}{16}y^2$$

	Intercept/Factored Form	Standard Form	Vertex Form
5	y = -(x+8)(x-4)	$y = -x^2 - 4x + 32$	$y = -(x-2)^2 + 36$
6	y = -2(x-1)(x+2)	$y = -2x^2 - 2x + 4$	$y = -(x+1)^2 + 36$
7		$y = 2x^2 - 20x + 51$	$y = 2(x - 5)^2 + 1$
8	$y = 2(x-4)^2$		$y = 2(x-4)^2$
9		$y = 2x^2 - 8x + 6$	

Complete the square?

$$y = 2x^2 - 20x + 51$$

1) factor out a (leading coefficient)

 $y = 2(x^2 - 10x) + 51$ question: how do I make x^2 -10x a perfect square \rightarrow half of b

y = 2(x - 5)(x - 5) + 51 what did I just add to right hand side? What do I have to do now? Subtract a * $(b/2)^2$

$$y = 2(x - 5)^{2} - 2 * 25 + 51$$

$$y = 2(x - 5)^2 + 1$$

www.desmos.com

AC =

AB =

Graph $y = \tan(x)$

What is the period of tangent? What is the amplitude?

Where is tangent undefined?

=