
6.s198 Assignment 3: Page 1 of 12

Massachusetts Institute of Technology

Dept. of Electrical Engineering and Computer Science
Fall Semester, 2018

MIT 6.S198: Deep Learning Practicum

Assignment 3: Convolutional Neural Networks

1.1: Experimenting with convolutional models (In-class on Monday)​ 2

1.2: How convolutional neural networks works​ 3

1.3: Experimenting with hyperparameters​ 3

1.4: Visualizing convolutional neural networks​ 4
<WRITEUP REQUIRED>​ 4

2: Style transfer examples​ 4

3.1: Style transfer​ 5

3.2: Computing image content​ 6

3.3: Computing image style​ 7

3.4: Transferring the style to the content image​ 8

3.5: Fast style transfer​ 8
<WRITEUP REQUIRED>​ 9

3.6: Building CNNs with code (All homework for this week due before class next Monday,
no separate Wednesday submission)​ 10

<WRITEUP REQUIRED>​ 10
<WRITEUP REQUIRED>​ 11
<WRITEUP REQUIRED>​ 11

3: Submission​ 11

http://mit.edu/6.S198

6.s198 Assignment 3: Page 2 of 12

Available: Monday, September 17, 2018
Due: Monday, September 24, 2018 at 10AM Eastern time

Due dates and submissions are for enrolled students only. If you are following these
materials from outside MIT on your own, please do not submit any assignments.

Class attendance is mandatory for the semester.

Please bring a laptop to every class—and make sure the battery is charged. Your laptop will
also need to have a camera in order to run the image demos.

Ask questions using the class Piazza site at https://piazza.com/mit/fall2018/6s198/. In general,
please document any issues you encounter in the setup process and email them to us at
6s198-staff@mit.edu (detailed information and screenshots appreciated).

1.1: Experimenting with convolutional models
(In-class on Monday)

Start up Model Builder: the same demo you’ve used for assignment 2,

https://courses.csail.mit.edu/6.s198/spring-2018/model-builder/src/model-builder/

Set the Dataset input to MNIST, and set the Model input to Convolutional. You’ll see that this

constructs a fairly elaborate model. There are two pieces, each piece consisting of three

layers—a convolutional layer, a max pool layer, and a ReLU activation layer—and the entire

thing feeding through a flatten layer to a fully connected layer with 10 hidden units. Let the

network train for a bit. You should see that it quickly gets over 90% accuracy. (Move the cursor

over the accuracy plot line to display the accuracy.)

Now switch the Dataset to CIFAR 10 and train that. The model still works, but doesn’t do nearly

as well: it should reach 50% accuracy after training with 40,000 examples. (Hal ran it for a

million examples and it barely reached 80% accuracy.) While the model is training, take a look

at the hyperparameters and the input and output shapes of the layers. The first (lowest)

convolutional layer has input shape [32,32,3]—the CIFAR images are 32⨉32 pixels and there

are three RGB colors per pixel. The output shape is [32,32,16]—for each input pixel the

convolutional layer generates 16 output values, as specified by the output hyperparameter for

https://piazza.com/mit/fall2018/6s198/
https://courses.csail.mit.edu/6.s198/spring-2018/model-builder/src/model-builder/
https://courses.csail.mit.edu/6.s198/spring-2018/model-builder/src/model-builder/
https://courses.csail.mit.edu/6.s198/spring-2018/model-builder/src/model-builder/

6.s198 Assignment 3: Page 3 of 12

the layer. The first max pool layer takes that [32,32,16] input shape (unchanged by ReLU) and

reduces it to [16,16,16] in accordance with the field = 2 hyperparameter. We’ll examine the

meanings of these and other hyperparameters below.

1.2: How convolutional neural networks works

Hal will give a talk based on the lecture “How Convolutional Neural Networks Work” by Brandon

Roher.

There is also a 25-minute video of Roher presenting his lecture here.

1.3: Experimenting with hyperparameters

Now that you have an idea of what the layers and hyperparameters mean, spend a few

moments modifying the network in Model Builder to see how these affect performance on

CIFAR 10.

For example, trying removing one of the Conv, ReLU, Max pool triples and see how that affects

performance. Or try changing the number of outputs for the conv layers, or the field size or

stride for the conv or max pool layers. Try at least three different variants that you train for

20,000 or 30,000 examples each and take notes on whether they make a difference (better or

worse). Note that changing hyperparameters may require changing other hyperparameters to

make the layer sizes consistent.

It might be useful to note down any successful configurations of hyperparameters or

architectures for Wednesday's assignment.

http://goo.gl/cYx2BA
https://www.youtube.com/watch?v=5aHRBCVTNKE
https://www.youtube.com/watch?v=5aHRBCVTNKE
https://www.youtube.com/watch?v=5aHRBCVTNKE

6.s198 Assignment 3: Page 4 of 12

1.4: Visualizing convolutional neural networks

To gain some intuition about how convolutional neural networks work, visit the Web page at

http://scs.ryerson.ca/~aharley/vis/conv/flat.html

This is a visualization demo by Adam Harley, described in the paper "An Interactive Node-Link

Visualization of Convolutional Neural Networks"

(http://www.cs.cmu.edu/~aharley/vis/harley_vis_isvc15.pdf). It shows a network with two

convolutional layers, two fully connected layers, and two max pool layers (called

“downsampling” in the demo). Unlike Model Builder, the input layer is at the bottom and the

output label layer at the top. The network was trained on MNIST; the labels are the digits 0

through 9.

You can use the demo's pencil and eraser tools to create inputs to the network and see how

these are transformed by the filters at each layer of the network. If you click on any square at a

layer, you can see the inputs and output of the neuron at that square. Notice that the

convolutional layer applies tanh as an activation function to the result of the weight; the demo

doesn’t show this as a separate activation layer.

<WRITEUP REQUIRED>

Spend some time playing with this demo. Draw an input, modify it, and observe how the results

at each layer change as you change the drawing. Create some inputs that look vaguely like

digits, but that confuse the network, i.e., where two or more of the labels register. Write up

interesting observations about what you see combined with illustrative screenshots.

http://scs.ryerson.ca/~aharley/vis/conv/flat.html
http://scs.ryerson.ca/~aharley/vis/conv/flat.html
http://www.cs.cmu.edu/~aharley/vis/harley_vis_isvc15.pdf

6.s198 Assignment 3: Page 5 of 12

2: Style transfer examples (Repeat of Assignment 2
Part 2.3)
Share the interesting examples of style transfer that you created and put on your Web page.

3.1: Style transfer

Style transfer is the technique of re-creating one image in the style of another. The overall
content of one image is preserved but appears to have been painted with the style of another
image.

Here’s an example—a photo of the Great Dome, Picasso’s painting La Muse, and the photo
rendered in Picasso’s style:

6.s198 Assignment 3: Page 6 of 12

Besides being fun to play with, style transfer is an instructive example of using CNN’s. It
illustrates some important ideas:

1. You can use neural nets to generate new examples as well as to classify existing examples.

2. You can combine attributes from multiple examples.

3. Just as with Teachable Machine in assignment 1, you can take advantage of transfer
learning: use pre-trained deep network classifiers to generate useful attributes for manipulating
images.

The key idea behind style transfer is that we can think of an image as having two aspects:
content and style. You can relate these to how images are processed by multilayer CNNs.

6.s198 Assignment 3: Page 7 of 12

Style transfer is the technique of recomposing one image in the style of another. Two inputs, a

content image and a style image, are analyzed by a convolutional neural network which is then

used to create an output image whose content mirrors the content image and whose style

resembles that of the style image. Style transfer was first demonstrated in the paper “A neural

algorithm of artistic style” by Gatys, Ecker and Bethge at the University of Tübingen in August

2015. It continues to be of great interest both to artists and scientists. You can find the paper at

http://arxiv.org/abs/1508.06576

3.2: Computing image content
Start with a multilayer CNN that has been pre-trained on a large collection of images. As we

saw earlier this week, each layer of the CNN includes several filters, where each filter uses

convolution to process the output of the filters from the preceding layer. The filters in the first

layer respond to small patterns contained in small patches of the image. Filters in higher layers

respond to patterns in the outputs of the layer below (“patterns of patterns”). The higher the

layer, the less the filter outputs result from small details of the image, and the more they result

from the general overall structure. The fact that the network has been pre-trained means that

the patterns here reflect the structure of actual images.

We can use this idea to “compute the content” of an image A: Process image A with the trained

CNN, pick a level that we’ll call the content layer: the outputs of all the filters at that level will be

the "content of the image". The choice of content level is up to us.

The output of each filter is a sequence of numbers generated by the convolution operation as

the filter slides over the input. This sequence is called the "activation map" for the filter on that

input. Concatenating all the activation maps for all the filters in the content layer produces a

long sequence of numbers C(A) that will be our representation of the image content: We’ll say

that image A and image B have "similar content" if C(A) and C(B) are close. That is, if we view

C(A) and C(B) as vectors, then we can define ContentDiff(A,B) = ||C(A) - C(B)|| to be the norm

of the difference vector C(A) - C(B) and we can use this as a measure of the difference

http://arxiv.org/abs/1508.06576
http://arxiv.org/abs/1508.06576

6.s198 Assignment 3: Page 8 of 12

between the content of A and the content of B. This is much the same idea as in assignment 1,

where we used output of the top layer units of Squeezenet to classify images.

3.3: Computing image style
Computing the "style" of an image is less straightforward. The insight is that style (in the

judgement of visual observers) does not depend on where the lower-level details are located in

the overall image, but rather on how the details (as filtered by several lower-level layers) are

correlated. To represent the style of an image B, we pick a set of layers that we’ll call the "style

layers". For each style layer we compute the activation maps for all the filters in that layer, just

as we did for the content layer above. Only this time, rather than just taking all values of all the

activations, we examine how the activations of the different filters are correlated with each other.

More formally, if there are N filters in the layer, and if we view the activation map for each filter

as a vector, we form the N⨉N matrix G(B) whose (i, j) element is the dot product of the vector for

filter i with the vector for filter j. This matrix is called the "Gram Matrix" for the chosen layer. Its

values indicate how the activations for the different filters for that layer occur together. We’ll say

that image A and image B have similar style with respect to the chosen layer if their two Gram

matrices G(A) and G(B) for that layer have elements that are close in value. To define the style

difference between A and B for a given layer, we subtract the two Gram matrices and take the

sum of the squares of all the elements in the difference matrix. We’ll define the overall

StyleDiff(A,B) to be the sum of the style differences between A and B for each of the layers that

were selected to be style layers.

3.4: Transferring the style to the content image
Performing style transfer of a style image X to a content image Y uses deep learning methods to

generate an image Z whose style matches the style of X and whose content matches the

content of Y. We start with a guess for Z (initially random noise) and define the error in the

guess to be the sum of StyleDiff(X,Z) and ContentDiff(Y,Z). In a similar way to how multilayer

networks are trained, one can compute the derivative of the error with respect to each of the

6.s198 Assignment 3: Page 9 of 12

pixel values of the guessed image Z to minimize that distance sum. This will let us use gradient

descent to make an improved guess for Z. We continue improving the guess until the error is

small, and this produces the style transfer result.

As with many machine learning systems, there are many hyperparameters available for tuning

in order to get good results. First, there are the usual hyperparameters involving learning:

learning rate, batch size, and so on. Then there’s the design of the CNN itself: number of

layers, patch size, activation functions, pooling, and more. Then there’s choice of which layers

to pick a the convolution layer and the style layers in performing the style transfer. Finally,

people sometimes weigh how much to consider content versus style in creating the transfer:

Choose a weighting factor W between 0 and 1 and take the error to minimize to be

W⨉StyleDiff(X,Z) + (1-W)⨉ContentDiff(Y,Z).

3.5: Fast style transfer
The style transfer method described above is slow, several minutes per image, due to the
multiple passes through the CNN required to perform gradient descent to improve the image
guess. Fast style transfer speeds up the process so that new styled images can be generated
in real time: one can even style video!

The trick is to precompute an image transformation network that is specialized to a given style
and choice of content layer and style layers. One you have this network, you use it as a
"feed-forward network": if you feed in a content image the network will output the pixel values of
the transformed image quickly, in a single pass, with no training.

To compute this feed-forward network, you use a pre-trained CNN and pick a style image
together with content and style layer levels using just as with ordinary style transfer. But
instead of processing only one content image, you proces many content images in succession
For each content image, you modify the weights in the network, using gradient descent, to
minimize the sum of the style distance and the content distance. Processing each successive
content image makes new successive modifications. The result, after processing many content
images, is a network that is able a style transfer of many input content image for the chosen
fixed style image. Given that this works for "many" content images, the fast-style transfer is

6.s198 Assignment 3: Page 10 of 12

assumed (without proof) to be adequate for any content image. Finally, you use the resulting
network as a one-shot feed-forward network for processing content images.

Generating a style transfer with the feed-forward network is fast, but creating the network is a
long computation, due to the large number or content images that need to be processed. It
takes several hours on a fast machine to produce the image transformation network for a single
style. But once you have the network, you can perform real-time style transfer on content
images in hundreds of milliseconds.

<WRITEUP REQUIRED>

Use the demo site at Fast Neural Style Transfer with Deeplearn.JS (a precursor to
Tensorflow.js) at

https://reiinakano.github.io/fast-style-transfer-deeplearnjs

to generate some examples using the pre-computed styles. You can choose from the provided
content images, or upload your own images, or even use the camera. Save screenshots of
some examples to submit with your homework for each of the following cases:

1. What happens when you pass an image through the same filter several times? Do you
observe any interesting characteristics or padding artifacts?

2. Apply a filter to an image and then apply another filter to that already-filtered image. Is the
result similar to what you would get when you apply the second filter to the original image?

3. Try different combinations of filters and number of times you filter an image. Note on your
website if you have any interesting observations or insights.

https://reiinakano.github.io/fast-style-transfer-deeplearnjs
https://reiinakano.github.io/fast-style-transfer-deeplearnjs

6.s198 Assignment 3: Page 11 of 12

3.6: Building CNNs with code (All homework for this
week due before class next Monday, no separate
Wednesday submission)
Last week you explored fully connected networks with model builder in class and then

experimented with the TensorflowJS code for these in homework. This week’s homework

covers the same experimentation with CNNs. Use your same .js and .html files from last week.

<WRITEUP REQUIRED>

Similar to the work you did with Model Builder on Monday, investigate several choices of

architectures and hyperparameters for classifying images from MNIST, Fashion MNIST, and

CIFAR_10 working from your .js and .html files from last week. You’ll need to change the code

where it says “Building the model” to construct new networks of your choice. In addition to the

constructor functions from last week, the .js code already has functions for adding convolutional

and max pool layers. For the following 4 questions, describe what architectures you

implemented and take screenshots of the results you got for each dataset (MNIST, Fashion

MNIST, and CIFAR).

1. Try changing the learning rate, batch size, and number of batches. Make sure that these

numbers are reasonable to start (i.e. won't take too long to run on your computer).

2. Try changing some of the other parameters like field size, stride, output, …

3. Do you have a hypothesis for why CIFAR-10 is so much harder to train on than Fashion

MNIST and MNIST (i.e. it’s more difficult to achieve a 90%+ accuracy) while Fashion MNIST

has similar training times to MNIST (even though Fashion MNIST is more complex than

MNIST)?

6.s198 Assignment 3: Page 12 of 12

4. How does adding more convolutional layers relate to accuracy and training speed? Is there a

point at which adding more layers plateaus or even decreases the maximum accuracy you are

able to achieve with that model?

5. Challenge: Are you able to find an architecture/combination of techniques that can get you to

60% accuracy on CIFAR-10 within 1 minute of training? 5 minutes? 10 minutes?

<WRITEUP REQUIRED>

6. Add code that captures some performance statistic from a testing run. For example, you

might keep track of the fraction of examples where the prediction was correct , or perhaps do

something more detailed that takes the predicted probabilities into account. Hint: Look near the

end of the file where the testing results are logged. Using your performance metrics, compare

some of the different models you built above. Write a brief report with screenshots showing the

choices and the results.

<WRITEUP REQUIRED>

7. Add links to your code files on your website (please make sure these are text files and not

screenshots so that the graders can run your code if necessary).

3: Submission
Create a page for assignment 3 on your class homework submission site. Include your name
and email address and the required writeups as indicated above together with code and images,
as appropriate.

Use This form to hand in Assignment 3
Due 10AM Monday, 9/24

​

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://drive.google.com/open?id=1EJpLbivWmsaUzLaMtabtyVJsoUnoqsTPrrHdlZNJaRw
http://creativecommons.org/licenses/by/4.0/

	1.1: Experimenting with convolutional models (In-class on Monday)
	1.2: How convolutional neural networks works
	1.3: Experimenting with hyperparameters
	1.4: Visualizing convolutional neural networks
	<WRITEUP REQUIRED>

	2: Style transfer examples (Repeat of Assignment 2 Part 2.3)
	3.1: Style transfer
	3.2: Computing image content
	3.3: Computing image style
	3.4: Transferring the style to the content image
	3.5: Fast style transfer
	<WRITEUP REQUIRED>

	3.6: Building CNNs with code (All homework for this week due before class next Monday, no separate Wednesday submission)
	<WRITEUP REQUIRED>
	<WRITEUP REQUIRED>
	<WRITEUP REQUIRED>

	3: Submission

