
Implement BiDi sessions in
ChromeDriver
This Document is Public

Attention: Externally visible, non-confidential​
Author: nechaev@chromium.org​
Status: Inception | Draft | Accepted | Done​
Short Link: go/chromedriver-bidi-sessions​
Created: 2022-01-25 / Last Updated: 2022-04-05

One-page overview

Summary
We propose implementing a BiDi session as an extended Classic session that delegates BiDi
commands to the BiDi Mapper. The client communication, both HTTP and WebSocket, will be
performed by the IO thread. The communication between ChromeDriver and Chrome will be mediated
by the BiDi Mapper.

Platforms
All platforms officially supported by ChromeDriver.

Team
nechaev@chromium.org, sadym@chromium.org, mathias@chromium.org

Tracking issue
Tracking issue for milestone #1 (2022Q1) is available in chromedriver:4016.

Value proposition
BiDi sessions support will enhance user experience in e2e testing and facilitate further development
of WebDriver BiDi standard.

Code affected
ChromeDriver

mailto:nechaev@chromium.org
http://go/chromedriver-bidi-sessions
https://docs.google.com/document/d/1VfQ9tv0wPSnb5TI-MOobjoQ5CXLnJJx9F_PxOMQc8kY/edit#heading=h.z9opc54dg5wx
https://docs.google.com/document/d/1VfQ9tv0wPSnb5TI-MOobjoQ5CXLnJJx9F_PxOMQc8kY/edit#heading=h.z9opc54dg5wx
mailto:nechaev@chromium.org
mailto:sadym@chromium.org
mailto:mths@chromium.org
https://bugs.chromium.org/p/chromedriver/issues/detail?id=4016

Signed off by
Name Write (not) LGTM in this row

mathias@chomium.org

sadym@chromium.org

johnchen@chromium.org

Core user stories
ChromeDriver is a server that has only one type of client - an application sending commands to it. The
commands can arrive over an HTTP channel (WebDriver Classic) and over a WebSocket channel
(WebDriver BiDi). This document concerns BiDi session implementation.

We will use the following words interchangeably:

●​ User and Client denote the client application.
●​ Server, WebDriver and ChromeDriver stand for the ChromeDriver instance serving the client

commands.
●​ Browser and Chrome denote the Chrome / Chromium browser

●​ Mapper denotes the BiDi Mapper - the BiDi implementation loaded by ChromeDriver to the
Chrome process.

There are two types of connections:

●​ The connection between the user app and ChromeDriver. We will call it user connection or BiDi
connection.

●​ The connection between ChromeDriver and the browser. We will call it a browser connection
or CDP connection.

The BiDi standard provides two distinct types of BiDi sessions. We will name them as follows:

●​ HTTP-BiDi session is created and destroyed over an HTTP command. This session accepts
both HTTP and BiDi commands.

●​ Pure-BiDi session is created via ‘session.new’ WebSocket command. This session does not
support any HTTP commands. The latest requirement (no HTTP support) does not seem to be
mandatory - we can skip it if this can simplify our implementation.

User Story 1: Create a connection and a session simultaneously​
(HTTP-BiDi session)
User sends an HTTP POST request with uri ‘/session’ similarly to the classic new session command.
The only difference is that the request has the capability webSocketUrl=true.

The server creates a new session, constructs a listener-url of form
ws[s]://<host>:<bidi-port>/session/<session_id> and starts / continues listening on the end point
<ip>/<bidi-port>.

The server returns a response with the value of listener-url set to webSocketUrl capability. The
response also contains sessionId of the new session as specified here.

The user connects to the bidi service via the url in webSocketUrl capability of the response.

The resulting connection is bound to the session with id=<session_id>. This means that any following
session command going through this connection will be attributed to the session with
id=<session_id>

User Story 2: Create a connection not bound to any session​
(Pure-BiDi session workflow)

User sends connection request over url of shape ws[s]://<ip>:<port>/session/.

The server creates a new connection not bound to any session and reads for the incoming messages.
Only commands without session context (session.new, session.status and alike) are allowed. Any
commands requiring session context are treated by the server as erroneous.

User Story 3: Create a session from a connection not bound to any session​
(Pure-BiDi session)
Precondition: User has already executed User Story 2 and has an unbound (to any session)
connection.

User issues the command ‘session.new’ over this connection.

A new session is created by the server and its id is returned to the user in the response.

Now the connection is bound to a session and the user may send any commands requiring session
context.

User Story 4: Create a connection attached to an existing session​
(both kinds of sessions)
Precondition: User has executed either User Story 1 or User Story 3. Session with <session_id> exists
on the server side and the user knows <session_id>.

The user can create a new connection via the url ws[s]://<ip>:<bidi-port>/session/<session_id>. This
connection will be bound to the existing session with id=<session_id>.

User Story 5. Close a session​
(HTTP-BiDi session)
The user can send the classic DELETE /session/<session_id> command to close any session.

The session is closed which means that

●​ All connections belonging to that session are shutdown

https://w3c.github.io/webdriver/#dfn-new-sessions

●​ Chrome instance is closed
●​ All session related information on the server side is deleted.

As standard does not yet specify a BiDi command for closing a session it seems reasonable to allow
a session created within the Pure-BiDi workflow to be closed by an HTTP command in the same way
as any session. There is an open discussion on this topic.

User Story 6. Send an HTTP command​
(HTTP-BiDi session)
The user can send any WebDriver Classic command to the HTTP-BiDi session over HTTP. It must be
handled with the same result as if it was sent to a classic session.

User Story 7. Send a WebSocket command​
(both kinds of session)
The User can send any BiDi command to any BiDi session. The command is handled asynchronously -
ChromeDriver must accept a new BiDi command even if the last BiDi command is still in progress.

BiDi command handling by ChromeDriver while an HTTP command is not yet finished is NOT required
/ promised by this document.

User Story 8. Propagate a BiDi event​
(both kinds of session)
BiDi events arriving over CDP must be propagated over the connection that subscribed to this specific
type of events.

Assumptions
●​ BiDi session must handle both HTTP and BiDi commands (inferred from earlier design docs)
●​ BiDi command does not have to be accepted before the last HTTP command is handled by

the session.

Design
We have agreed to implement BiDi via a Mapper deployed by ChromeDriver into Chrome. If this
solution does not work we will explore others.

The most challenging requirement to handle is that a BiDi session created over HTTP must handle
both HTTP and WebSocket requests. This in turn requires that the ChromeDriver session state never
lags behind the state observable by the client via the events.

https://w3c.github.io/webdriver-bidi/
https://github.com/w3c/webdriver-bidi/issues/119
https://docs.google.com/document/d/1_UTBlOa5GCdf075ni4hDVgBSHkgeblfP_g_hwxqRhjg/edit#heading=h.63fdo68dat40

Mapper per connection vs. Mapper per session
Single mapper per connection makes message forwarding between User and Chrome pretty
straightforward: we store a table of correspondence and route messages in accordance with it.

The possible disadvantage of this approach is that some event coming from the browser might reach
the user before the classic session state is updated. In this case user response to the event via an
HTTP command will not work as expected. See the illustration below

Another issue is that sequences of events from different mappers do not have to have a certain order
between the sequences.

For example we have two mappers M1 and M2. They transmit the following subsequences of events
originated from some common sequence:​
M1: e1, e2, e3, e4, e5​
M2: e1, e3, e4​
The events can arrive from Mapper to ChromeDriver in this order: e1, e2, … e5 (all from M1), e1, e3, e4
(all from M2).​
This can happen, for instance, if the thread where M2 lives has been preempted.​
All these events can arrive before or after the ChromeDriver session state has been updated to reflect
the browser state after the event e5. The session state can also be updated up to e5 somewhere in
between.

This illustrates that the state that the client can infer via different channels can significantly differ
from the ChromeDriver session state.

However, if we ensure that any event is handled by the ChromeDriver session first and forwarded to
the client only after this, then the session state will never lag behind the state inferred by the client.​
This is acceptable because the client assumes that the session might advance before they receive
and handle the events.

As the session must not forward the events, blindly acting as a router, multiple CDP connections or
multiple Mappers give us no advantages.​
Therefore it is suggested to have one CDP connection and one Mapper per session.

The main disadvantage of this architecture is that ChromeDriver must keep the information about
each connection and its events of interest to forward only the appropriate events. There is also a
need to remember what commands have come over which connection and route the responses
accordingly.

Session state is never behind the user
In order to ensure that the session state never lags behind the state observable by the user we must
route all the CDP events via the Mapper.

For each CDP event the Mapper does the following:

●​ Forward the CDP event to ChromeDriver. At this point ChromeDriver will update the session
state.

●​ Update the internal state of the Mapper.
●​ Generate BiDi events and send them to ChromeDriver. These events will be bluntly

retransmitted to the user.

Thus we always have a guarantee that HTTP session state is updated before the BiDi events are
propagated to the client.

Mapping between WebSocket connections and threads
Interaction with DOM from multiple threads can create races and therefore it is not supported by CDP.
The user should view multiple connections as being bound to a single thread shared among them. In
particular this means that a blocking call made via one connection prevents any progress for the calls
made via another connection while the first call is being processed. If code executed via one
connection actively awaits for a condition set by the code executed via another connection (maybe
even from another thread) it might never exit. This kind of problem is considered as a bug in the user
code.

Fallback on Classic command
It might happen that some BiDi commands are too difficult or too error prone to be implemented in
the Mapper. This, for instance, can be the case with the commands relying on special labels left in
DOM elements by ChromeDriver.

All the proposed designs allow falling back on the existing Classic commands.

Proactive event consumption
Current implementation consumes browser events lazily: the session sleeps until the user issues a
new HTTP command. This is not acceptable for BiDi as the events must propagate to the user
proactively.

The following designs address this issue. As a side effect the Classic session will also consume
events instantly. This must improve the Classic session performance.

Preferred implementation
We only consider the possible implementations that can be constructed from the existing building
blocks. This is not a big limitation because they already have all the necessary properties, in
particular they support non-blocking IO.

We have three types of message pump:

●​ GUI - supports non-blocking IO and system events
●​ IO - supports non-blocking IO
●​ Default - supports commands and timers.

The current implementation of ChromeDriver already uses the IO message pump for the IO thread
and the Default message pump for the session threads. The non-blocking IO (sockets, servers) relies
heavily on the underlying IO message pump. The blocking IO like SyncWebSocket is built on top of the
non-blocking IO: the data is posted to the IO thread and the calling thread awaits for the signal
supplied together with the data. The designs below rely only on the existing IO facilities.

Earlier we considered several designs not-based on the aforementioned building blocks. These have
been discarded and will not be mentioned in the final version of the design doc.

We also do not consider any designs where communication between ChromeDriver and Browser
significantly differs from the existing implementation as the effort for changing it would be excessive.
The only difference that we introduce is that all communication between ChromeDriver and Chrome
is mediated by the Mapper.

HTTP command execution will be the same for all designs.

Communication between ChromeDriver and User must be non-blocking in order to avoid deadlocks
that can happen when one side tries to write to the socket while the incoming buffer on the other side
is full. This is the illustration of a possible deadlock situation.

The proposed design is described as Alternative 3 “Client communication over IO thread”. It is
chosen among the others because it provides the most straightforward way to implement a Pure-BiDi
session.

Alternatives considered
The illustrations below have the following color coding:

●​ Violet - threads with lifetime bound to the lifetime of ChromeDriver process
●​ Green - threads with session lifetime

Alternative 1. Client communications in SessionIO Thread
When we create a session we create a thread that will serve the user connections belonging to that
session.

The user stories are handled as follows:

The lifetime of the Session IO Thread is bound by the lifetime of the Session Thread.

The unbound connections from Pure-BiDi apparently cannot be served by the SessionIO Thread.
These, in principle, might be accepted by the IO thread or by some dedicated thread. An unbound
connection has to migrate to the SessionIO Thread as soon as a new session is created via this
connection. Such connection migration is not supported by the current implementation of HttpServer.

This means that Pure-BiDi has to be implemented differently. One idea for the implementation is
described in the Alternative 4.

Alternative 2. Client communication in Session Thread
In this design we are merging Session Thread and Session IO Thread so that Session Thread handles
both HTTP and BiDi traffic. In order to do that we need to change the message pump type of the
session thread from Default to IO.

The user stories are handled as follows:

We do not create new CDP connections for each BiDi connection and therefore the traffic from
multiple BiDi connections is routed through the single CDP connection. The session keeps
information on what command has come through which channel and routes the response
appropriately. The session also keeps the information about events to which each BiDi connection
has subscribed so that BiDi events are routed by the session to the connections interested in these
events.

This design has the same problems as the Alternative 1.

Alternative 3. Client communication in IO thread
In this design the IO thread carries out all communications.

Session creation is identical to the Alternative 2.

The user stories are handled as follows:

Session deletion works the same way as in the current implementation.

The Pure-BiDi session can be implemented as follows:

●​ New connections are accepted on the same socket as the other WebSocket connections in
the IO thread.

●​ The new connections not bound to any session are served by the CMD thread.
●​ As soon as the session.new command arrives via such an unbound connection a new

HTTP-BiDi session is created. That is there is no such class as Pure-BiDi session.

Alternative 4. Single thread for BiDi + IO multiplexing
This design can be used to implement Pure-BiDi connections.

It is explained here at a very coarse level as we are unlikely to implement Pure-BiDi sessions now
(2022Q2).

We have a single thread with a listener separate from the listener used by the HTTP requests handler.​
All user connections are polled by the listener thread that accepts them.​
New session requests are first sent to the Command Thread, where the new session is registered,
and then handled by the listener thread.​
These sessions are completely different from the classic sessions and essentially they are maps
between the user and browser connections.​
This design allows multiple Mappers and multiple CDP connections because Pure-BiDi sessions will

be stateless (not counting the aforementioned table).​

Rollout plan
Waterfall.

As the WebDriver BiDi standard is currently in immature state and it supports too few commands the
Pure-BiDi sessions will hardly be useful.​
Most likely the users will prefer HTTP-BiDi sessions because they bring them the best from both
worlds.​
Therefore we will not work on Pure-BiDi sessions in the nearest future (2022Q2 or whole 2022).

Multiple connections per session will not be supported in 2022Q2 because they require a lot of
bookkeeping to implement correct response and event routing.

Core principle considerations

Speed
Chrome performance is unaffected.

ChromeDriver performance must improve for ChromeDriver classic due to the active event
consumption - a new user HTTP command will not have to wait until all the pending events are
processed.

Chrome memory usage will increase under automation due to injection of Mapper code.

Security

As ChromeDriver and Chrome communicate over an unprotected channel we should be explicit to the
users that TLS support by the ChromeDriver does not guarantee any safety of the traffic because it
can be sniffed while being re-transmitted between ChromeDriver and Chrome.

Simplicity
<Describe how the feature fits into the rest of DevTools. Potential questions to answer:

●​ "Have I considered and documented unhappy paths or unwelcome results of these changes
for users?"

●​ "Have I defined the user problems clearly and addressed them?"
●​ "Have I made sure all non-trivial work is done off the UI thread, so the UI is never unresponsive

for > 200ms?" - UI jank is the devil. Don't make your change contribute to it.
●​ "Have I done my best to avoid introducing unexpected modal workflows, popups, questions

the user can't answer, superfluous extra options?" - we bend over backwards to avoid these
things.

●​ "Have I spent time before the next major release polishing my feature, making sure it has all
appropriate animations, plays nicely with other Chrome features like themes, etc?"

If you are in doubt about the impact of your design for the user, followup with UX / PM first.>

Testing plan
We want to rely on integration tests written by us and WPT written by the community and by us.

Follow-up work
We need to think through the design for Pure-BiDi sessions - it might affect the design for HTTP-BiDi.

Open Questions
1.​ How are we going to close a Pure-BiDi session? There is no corresponding command in the

standard. There is a ticket concerning this topic.
2.​ Are we going to allow the user to reconnect? How are we going to do that? There is a thread

concerning the reconnection possibility.
3.​ What if the user issues a session.new command via the connection already bound to some

session? It is not clear what we should do with the already existing session.
4.​ When we close a session what are we going to do with its connections? Shall we close them

or make them unbound?
5.​ How can we ensure interoperability between BiDi session commands and HTTP session

commands for HTTP-BiDi sessions? For instance ExecuteSwitchToFrame supplies frames
with property ‘cd_frame_id_’ thus providing an additional way of their identification. This id is
used for example for bringing an element into a view while clicking it. We need to ensure that
BiDi Mapper uses the same mechanisms as ChromeDriver Classic.​
Possible solution: execute this sort of commands via the means of classic session, don’t
handle them in the Mapper.

https://github.com/w3c/webdriver-bidi/issues/119
https://github.com/w3c/webdriver-bidi/issues/25
https://source.chromium.org/chromium/chromium/src/+/main:chrome/test/chromedriver/window_commands.cc;l=865;drc=b183cc28e6a297f2761ec1d6cbf3bab89b5b64c4;bpv=1;bpt=1
https://source.chromium.org/chromium/chromium/src/+/main:chrome/test/chromedriver/element_util.cc;l=33;bpv=1;bpt=1?q=cd_frame_id_&ss=chromium%2Fchromium%2Fsrc:chrome%2Ftest%2Fchromedriver%2F
https://source.chromium.org/chromium/chromium/src/+/main:chrome/test/chromedriver/element_util.cc;l=33;bpv=1;bpt=1?q=cd_frame_id_&ss=chromium%2Fchromium%2Fsrc:chrome%2Ftest%2Fchromedriver%2F

	Implement BiDi sessions in ChromeDriver
	One-page overview
	Summary
	Platforms
	Team
	Tracking issue
	Value proposition
	Code affected

	Signed off by
	Core user stories
	ChromeDriver is a server that has only one type of client - an application sending commands to it. The commands can arrive over an HTTP channel (WebDriver Classic) and over a WebSocket channel (WebDriver BiDi). This document concerns BiDi session implementation.
	We will use the following words interchangeably:
	●​User and Client denote the client application.
	●​Server, WebDriver and ChromeDriver stand for the ChromeDriver instance serving the client commands.
	User Story 1: Create a connection and a session simultaneously​(HTTP-BiDi session)

	User sends an HTTP POST request with uri ‘/session’ similarly to the classic new session command. The only difference is that the request has the capability webSocketUrl=true.
	User Story 2: Create a connection not bound to any session​(Pure-BiDi session workflow)
	User Story 3: Create a session from a connection not bound to any session​(Pure-BiDi session)
	User Story 4: Create a connection attached to an existing session​(both kinds of sessions)
	User Story 5. Close a session​(HTTP-BiDi session)
	User Story 6. Send an HTTP command​(HTTP-BiDi session)
	User Story 7. Send a WebSocket command​(both kinds of session)
	User Story 8. Propagate a BiDi event​(both kinds of session)

	Assumptions
	Design
	Mapper per connection vs. Mapper per session
	Session state is never behind the user
	Mapping between WebSocket connections and threads
	Fallback on Classic command
	Proactive event consumption
	Preferred implementation

	Alternatives considered
	Alternative 1. Client communications in SessionIO Thread
	Alternative 2. Client communication in Session Thread
	Alternative 3. Client communication in IO thread
	Alternative 4. Single thread for BiDi + IO multiplexing

	Rollout plan
	Core principle considerations
	Speed
	Simplicity

	Testing plan
	Follow-up work
	Open Questions

