
placeElement
 <fserb@google.com> Fernando Serboncini

 <khushalsagar@google.com> Khushal Sagar

This proposal covers APIs to allow live HTML elements on Canvas 2D, WebGL and
WebGPU.

Use Cases

●​ Styled, Layouted & Accessible Text in Canvas. There’s a strong need for
better text support on Canvas. This includes both visual features like multi-line
styled text but also the possibility to support the same level of user interaction as
the rest of the web (scrolling, interactions, accessibility, indexability, translate,
find-in-page, IME input, spellcheck, autofill, etc).

●​ Interactive forms. Access to live interactive forms, links, editable content with
the same quality as the web. Close the app gap with Flash.

●​ Composing HTML elements with shaders. “CSS shaders” precede WebGL.
The ability to use shader effects with real HTML.

●​ Allow HTML rendering in 3D Context. To be able to have interfaces and full
accessible content in 3D.

We also got strong public feedback on some demos for this feature.

Explainer

There are 2 API surfaces to be exposed on this proposal. First, a high level API
that brings an Element and its subtree into the 2D Canvas. Second, a broken

mailto:fserb@google.com
mailto:khushalsagar@google.com
mailto:fserb@google.com
mailto:khushalsagar@google.com
https://docs.google.com/document/d/1szUeMmgS6e-C6JNgnEWQ8AkGmgCG10vXOH9tJObDzVU/edit

JavaScript

down version that allows finer control over Javascript and is also available in 3D
contexts.

For this explainer, we use the term “live element” to describe an HTML element
not only rendered to the screen, but that also responds to events, user
interactions, text selection, scrolling, tab order, accessibility.

placeElement

placeElement is the high level “do the right thing” API.

interface mixin CanvasPlaceElements {

 Element placeElement(Element el, double x, double y);

}

CanvasRenderingContext2D includes CanvasPlaceElements;

This element must be a (direct?) child of the Canvas element. The children elements of
Canvas don’t impact the overall document layout and, before placeElement, are
considered fallback content and ignored on modern browsers. Once placeElement is
called, the element becomes alive until the canvas is reset (either by ctx.reset() or
canvas.width = canvas.width) or until it’s not a child of the canvas anymore.

The element is rendered at a particular position and takes the CTM (current transform
matrix) of the canvas into consideration.

The element gets repainted (together with the canvas) as needed. The call order of
placeElement implicitly describes which canvas draw commands happen before (below)
or after (above) the rendering of the element.

placeElement() may taint the canvas. It returns the element placed or null if failed.

JavaScript

JavaScript

It’s also worth noting that this never duplicates the element. If called twice on a single
canvas, it simply “replaces” (repositions) the element to a new location + CTM and to a
new position in the canvas stack.

Usage example:

<!doctype html>

<html><body>

<canvas id=c>

 <div id=d>hello world!</div>

</canvas>

<script>

const ctx = document.getElementById("c").getContext("2d");

ctx.rotate(Math.PI / 4);

ctx.placeElement(document.getElementById("d"), 10, 10);

</script>

</body></html>

This would add a text “hello world!” to the canvas, with a clickable link and interactable
text rotated by 45 degrees.

drawElement
The second API is a broken down version of the previous one, that allows the same
behavior as placeElement, but broken down in stages. It requires more work from
developers to support live elements, but is also exposed to 3D contexts, which
placeElement isn’t. This API is also useful for cases where interaction is not required,
like drawing better text for images or for screenshotting the page.

interface mixin CanvasDrawElements {

 undefined updateElement(Element el,

 optional DOMMatrixInit transform = {}, optional long zOrder);

https://example.com

 undefined removeElement(Element el);

}

interface CanvasInvalidationEvent {

 readonly attribute HTMLCanvasElement canvas;

 readonly attribute DOMString reason;

 readonly attribute DOMRect invalidation;

}

// for Canvas 2D
// drawImage
typedef (... or Element) CanvasImageSource;

CanvasRenderingContext2D includes CanvasDrawElements;

// for WebGL

// texImage2D, texSubImage2D
typedef (... or Element) TexImageSource;

WebGLRenderingContext includes CanvasDrawElements;

WebGL2RenderingContext includes CanvasDrawElements;

// for WebGPU

// copyExternalImageToTexture

typedef (... or Element) GPUImageCopyExternalImageSource;

GPUCanvasContext includes CanvasDrawElements;

When using the drawElement API, the user has to complete the loop to make the
element alive in Javascript:

●​ it needs to call the draw function (drawImage, texImage2D,
GPUImageCopyExternalImageSource),

JavaScript

●​ update the element transform (so the browser knows where the element ended
up (in relationship to the canvas), and

●​ respond to a new invalidation event (for redrawing or refocusing within the scene,
as needed). In theory, the invalidation event is optional if the user is updating the
element on RAF, but it could still be useful if the page wants to respond to a
find-in-page event, for example.

In theory, drawElement can be used to provide non-accessible text. We still enforce that
the element (at drawing time) must be a child of its canvas, but the liveness of the
element depends on developers doing the right thing. That said, the current status quo
is that it’s impossible for developers to “do the right thing”, i.e., text in 3D contexts - for
example - is currently always inaccessible. This API would allow developers to do the
right thing.

An already placedElement can be drawn, but cannot have its transform updated.

Usage example:

<!doctype html>
<html><body>

<canvas id=c>

 <div id=d>hello world!</div>
</canvas>
<script>

const ctx = document.getElementById("c").getContext("2d");

const el = document.getElementById("d");
ctx.rotate(Math.PI / 4);
ctx.drawImage(el, 10, 10);

ctx.updatedElement(el, ctx.getTransform());

</script>
</body></html>

This would render the text “hello world!” to the canvas with an interactable text.

https://example.com

Potential Challenges

Privacy-preserving rendering
placeElement can taint the canvas2D as needed, so even cross-origin content could
eventually be placed without privacy issues. For drawElement, there’s no tainting
mechanism for WebGL/WebGPU but even if it existed, the existence of shaders makes
it that all rendered content should be assumed to be readable by the page. This is why
WebGL/WebGPU today disallows rendering cross-origin images.

To support drawElement at all, we need to make sure that the rendering of the elements
is done in a privacy-preserving way. Visited links may be changing soon to be
domain-based. But other issues (like dictionary spelling) may need to be disabled.

Complexity of rendering certain elements
It’s possible that some elements may not be renderable to a texture (2D or 3D). For
those cases, we are ready to have an initial disallowed list of elements to simplify
implementation by UAs. For those cases, placeElement() could return null to indicate
this placeElement is not supported.

Re-compositing for placeElement
placeElement requires the browser to recompose the canvas buffer each time the
element changes. This should be equivalent to rendering all commands executed on the
canvas with the latest contents for each placed element. If implemented as such, this
would be inefficient since the buffer of commands can grow unbounded.

The browser could optimize by squashing sets of commands into buffers at
placeElement boundaries whenever possible (each saveLayer would also need to split
up?).

Hit Testing Data structures
The canvas subtree is laid out based on the DOM/style applied to the elements.
However, their contents are not painted based on the position or ordering of their boxes.
It is instead defined by the canvas commands which render the element’s image into

the canvas buffer.​
​
This affects both hit-testing and behaviour of platform APIs (like IntersectionObserver)
which allows authors to observe the position of these elements. This is the data
provided by CanvasDrawElements::updateElement API for drawElement mode and
done automatically by the browser for placeElement mode.

Implementation Details

Here is a summary of the implementation details of this spec in Chromium. Its function
is to illustrate some of the potential challenges of a placeElement implementation.

Render Canvas Descendants
The following changes are needed to layout and paint canvas descendants so their
image can be used by drawImage/texImage2D/externalTexImage2D:

●​ Layout for canvas children​
Generally children of replaced elements are ignored by layout. The exception to
this has been video elements which use a shadow DOM to render controls:
LayoutMedia::CanHaveChildren. If a canvas uses the proposed APIs above, this
mode will be supported for canvas as well.​

●​ Privacy preserving rendering. ​
Visited links, dictionary spell checking, etc.​

●​ Painting​
The canvas subtree goes through the pre-paint step during the regular lifecycle
update as usual (except for update element position below). However the subtree
is skipped during paint when preparing the display list forwarded to the
compositor.​
​
Instead an independent paint step is triggered similar to
DataTransfer::NodeImage to generate a PaintRecord for the element which is
appended to the canvas display list (for 2D) or rasterized to a texture (for 3D).​
​

https://source.chromium.org/chromium/chromium/src/+/main:third_party/blink/renderer/core/layout/layout_media.h;l=90;drc=5fe1b0cf06707a12a5f48d1828ad173a76ee31ab
https://source.chromium.org/chromium/chromium/src/+/main:third_party/blink/renderer/core/clipboard/data_transfer.h;l=155;drc=20135c10f0869fdefb75d990ec84143a649d84c3

This step will need to support caching the painted output.​

Make Elements Interactive/Animated
This is the set of changes required to make elements rendered onto the canvas
interactive and animated.​

●​ Invalidation signal​
placedElements needs to signal to canvas that it needs to redraw itself;
drawElements needs to trigger an event to tell JS that the element has been
updated.​

●​ Update element position​
From a position perspective, placeElement() is equivalent to drawElement with
updateElement() being called with the canvas’ CTM at the time of
placeElement(). Both those paths need to update the element’s “final real
position”. In Chrome, this was done through a transform paint property node, that
is equivalent to what other CSS properties (like transform) generate.​

●​ Update element stacking​
Similar to above, generally hit-testing depends on the order for paint layers to
decide which element draws on top. This stacking is generated based on the
DOM order + styles (z-order) applied to the elements. In Chrome, this is done by
modifying the paint layer iteration order based on the stacking for
placeElement(), or the zOrder provided by updateElement().​

●​ Forcing main thread animations​
For drawElement interactive mode (used by 3D) all animations and interaction
needs to be forced to run on the main thread. This includes the following
features:

○​ Composited animations like transform, opacity, filter etc.
○​ Scrolling
○​ Off thread paint worklets
○​ Video

There are already code-paths to run these on the main thread in some cases
which can be reused. But some features are only supported in the compositor:

animation images, OOPIFs. Animated image can be main thread driven, so
support can be added incrementally. OOPIF support is not needed due to privacy
restrictions.

●​ Hit Testing in the compositor
The compositor gets hit test regions to allow faster interaction without going back
to the main thread. For example, regions which have a non-passive touch
handler or main thread scrolling regions. This data will need to be added to the
canvas’s CC layer for placed elements.

Make Canvas2D auto-redraw on placeElement
For Canvas2D to support “auto redrawing” when its placed element has updated, there
were a couple techniques we considered to combine the rendering of placed elements
with regular canvas drawing.​
​
Currently each canvas is represented as a single TextureLayer in the compositing stack.
The paint commands added to the canvas are serialized directly from the renderer main
thread to the GPU process to update the texture referenced by this layer, which
composites it with the rest of the Document.

1.​ Display list with references. Keep canvas drawing commands as a display list
and add references to where placeElement rendering should go. At rendering
time, build a final display list and render it.​
​
This is the simplest approach but can be inefficient because canvas needs to
persist all commands added to it since the last reset.​

2.​ Layered canvas. When there’s a placeElement call, all previous canvas2D
drawings get collapsed into a texture. Canvas manages this list of textures +
placeElement rendering and composites them in order.​
​
This is an optimization to the approach above. It allows for re-presenting the
canvas with the updated elements without redrawing all the canvas commands.​

3.​ Layered compositing. Similar to layered canvas, but instead of canvas managing
the final compositing, it is deferred to the compositor. The canvas is represented
as a list of layers to the compositor instead of a single layer.​

​
This list is made up of TextureLayers (for collapsed commands) and the
placedElement’s contents are represented by a list of layers produced by the
paint system similar to the regular rendering of web content. The main pro of this
approach is threaded rendering/scrolling since placed elements are rendered
similar to non-canvas elements.

Note: Both #1 and #2 will require main thread invalidation + redraw of the canvas using
the same signal provided to script. #3 can use the regular paint invalidation code-path to
commit a new display list to the compositor.

Open Issues
1.​ Should placed elements be direct children of the canvas or any descendant is

ok? Might be harder to fake the element’s rendered position in the canvas if there
are boxes between the canvas and the element in the tree.

2.​ How are non-placed canvas children represented in the layout tree. We likely
need to layout the entire subtree (especially if a placed element can be a
descendant) and make everything not placed visibility: hidden so they are not
painted and inert.

3.​ Should we force containment (layout or paint) on canvas to ensure the children
don’t affect the layout of the rest of the Document?

4.​ Is it worth providing the invalidation rect (based on element bounds) or will
authors always do full redraw?

5.​ Should draw commands after placeElement block the interaction rect of elements
(since they would occlude the element)? Should there be a context state to
control this behavior?

6.​ When painting the elements, which box should be painted? Should it include
shadow? If so, how does the developer know what is the full rendered size?

7.​ If developers want to align placeElements (either by baseline or box), how are
they supposed to do it?

8.​ What happens to placed inline elements?
9.​ Clarify the timing for when the image is generated when using drawImage.

Ideally it should be at the end of all script callbacks during update the rendering
but unclear whether that’s possible for 3D.

10.​The author might draw a subset of the element. Should we add a “src rect” to
updateElement.

https://html.spec.whatwg.org/#update-the-rendering

11.​Should we allow a place element to be a descendant of another place element?
It will cause double draw of the descendant and also make it harder to reason
about the element’s onscreen position.

12.​Placed elements must be stacking contexts. Do we need any other restriction?
13.​Should we force blockifying canvas children?

	placeElement
	Use Cases
	Explainer
	placeElement
	drawElement

	Potential Challenges
	Privacy-preserving rendering
	Complexity of rendering certain elements
	Re-compositing for placeElement
	Hit Testing Data structures

	Implementation Details
	Render Canvas Descendants
	Make Elements Interactive/Animated
	Make Canvas2D auto-redraw on placeElement

	Open Issues

