
Intro
I will go over scripting inside of sequences, composing in MML and how the audio
system is structured in general.

Before reading this, you should be very familiar with sm64 sequences or read my
previous tutorials which you can find here.

Scripting
Scripting in sequences has 3 main goals. To control what part of a sequence is
executed on demand, to edit sequence parameters on demand and to be able to write
back data for external access when required.

In the previous tutorial I covered what value is and some ways we can use it and
variations to execute different pieces of the sequence, or edit how the sequence plays.
All of the examples provided were executed from sequence start, but to master scripting
we need to be able to control value at any point in the sequence.

Accessing Sequences in Code
There is a lot you can do outside of sequences with code and it is usually much easier
than doing the equivalent actions in MML. You can write to any of the sequence player
struct values with one line, and if you know what sequence you are playing this can
achieve almost all of the same effects as scripting effects in your MML can. Even if you
are set on using MML scripts to do certain tasks, you need to write to the MML in order
to respond to the game state anyway. Below is a quick cheat sheet on accessing
sequence player values. Make sure you inlucde /src/audio/load.h in your file to get the
variable definitions.

/*​
Use these defs to pick the correct player​
#define SEQ_PLAYER_LEVEL 0 // Level background music​
#define SEQ_PLAYER_ENV 1 // Misc music like the puzzle

jingle​
#define SEQ_PLAYER_SFX 2 // Sound effects​
*/​
// set a sound script IO for a channel​
gSequencePlayers[player].channels[j]->soundScriptIO[i];​
// set the variation for a player​

https://sites.google.com/view/supermario64romhacks/tweaks-and-tutorials?authuser=0

gSequencePlayers[player].seqVariation;

​
// setting other values directly via code​
// seq volume​
gSequencePlayers[player].fadeVolume = Float_Value;​
// seq tempo​
gSequencePlayers[player].tempo = S16_Value;​
​
// chan reverb​
gSequencePlayers[player].channels[chan]->reverb = S16_Value;​
// chan volume​
gSequencePlayers[player].channels[chan]->volume = Float_Value;​
// chan transposition​
gSequencePlayers[player].channels[chan]->transposition = S16_Value;​
// ... you can find other values in /src/audio/internal.h by looking

at struct definitions

There is nothing inherently dangerous with doing all sequence manipulation in the game
thread instead of using scripting for dynamic sequences. In fact I recommend you do
that for most things, but there is a disadvantage with doing this.

When you are playing a sequence, you don’t exactly know where you are in the MML
unless you create your own time management system. If you were to do this, you would
then also have to write specific timing instructions for each sequence if you wanted to
sync events. You also don’t have direct access to when effects are applied and would
have to create data tables for each sequence to manage effects and preset values,
which you would have to manage separately from the actual sequence. Anything related
to the internal state of the sequence would require constant monitoring to stay on top of,
which is why I would recommend doing these things inside of the sequence itself.

Continuous Script Updates
Our goal is a responsive script that will change state when called upon, rather than
when it is initiated. To create a responsive script we need to continuously check for
changes in our script state while parsing the sequence, and then create the proper
controls to change smoothly when needed.

To continuously check for changes is a simple task. We can do this using chan_jump
<target> cmds within our script and chan_delay <length> cmds. The basic setup of a
channel is to create a layer, add effects, and then wait until new effects or layers are

needed. During this waiting time, we can loop or jump backwards in the script to
execute sequence logic and check for state changes.

chan0_tsec0:​
chan_largenoteson​
chan_setlayer 0, layer0_test​
chan_setinstr 4​
chan_setvol 100

chan0_loop0:​
chan_delay 192 ; 4 beats worth​
chan_IO_set 0, exec_chan_effect ; this is custom macro​
chan_jump chan0_loop

Channels can loop forever, or can be set to loop a finite number of times. Channels are
restarted whenever the sequence loops, so the end time on them is of no consequence.
This allows us to easily add our scripting checks at the end of a channel with no worry
of timing synchronization.

In this example, I check for effect updates every 4 beats, which is one measure in 4 • 4
music. This is something much more difficult (or annoying at least) to do via code alone.
You can replace this with 48*num_beats for any other time signature your music has, or
whatever frequency you want really and it will work just as well.

If we have various channel events throughout the timeframe of our sequence, it
becomes harder to add these checks. We need to either manually sync time up with
existing cmds, or destroy the timing in those cmds. This is something commonly seen in
channels with pitch bends or volume fade/swells.

chan0_tsec0:​
chan_largenoteson​
chan_setlayer 0, layer0_test​
chan_setinstr 4​
chan_setvol 100​
chan_delay 50​
chan_setvol 90​
chan_delay 10​
chan_setvol 80​
chan_delay 10​
chan_setvol 70​
chan_delay 192-10-10-50 ; 122​
chan_IO_set 0, exec_chan_effect ; this is custom macro​

...repeat for rest of chan data

I manually add together the delays and then check for changes every 192 updates. You
can also add the custom macros into your midi file itself by adding a new midi CC event
and mapping it to a custom MML cmd in seq64. This is the easiest method and the one
with the most permanence. You can add as many new macros as you want to
customize your specific midi as needed, and you can even create new ABI mapping
files for specific needs.

.macro chan_IO_set, slot, target​
​ chan_ioreadval slot​
​ .if slot < 4​
​ ​ chan_iowriteval slot ; slot is reset if < 4​
​ .endif​
​ chan_bltz @skip ; @ creates a static label​
​ chan_call target​
​ @skip:​
.endmacro

I create mappings for custom MML cmds that are macros I add to my seq_macros.asm
file. You can customize the macros to your liking but keep in mind midi CCs can only
have byte arguments. I can add these to my midi file by picking the same midi CC event
I mapped them to, choosing the correct arguments, and then filling in the text targets
later.

Responsive Channel Effects
With the above scheme, we can regularly check for updates to our sequence via
chan_IO_set <slot> <target> or similar macros. In order to execute logic, we need to
read inputs to our channel and execute channel/sequence events, without breaking the
timing of our script, meaning we need to do it all in one audio update.

Set Effect To Target On Demand
The easiest thing to do is to set a channel effect to a value. We can do this by setting up
an ad hoc schema relating scriptIO slots to specific effects. This is something the SFX
script does, and can easily be done for either just one channel or all channels at once.
In this example, I will set slot 0 as the channel volume and update it constantly. I will
define a new macro for this that requires only a slot number so I can insert this with a
single midi CC.

chn0_tsec0:​
​ chan_largenoteson​
​ chan_setlayer 0, test_ly0​
​ chan_setvol 100 ; gen by orig script​
​ chan_setinstr 7​
​ chan_update_vol 0 ; custom macro​
​ chan_end​
​
.macro chan_update_vol, slot​
​ @loop:​
​ ​ chan_ioreadval slot​
​ ​ chan_bltz @no_vol_set​
​ ​ chan_writeseq 0, @vol_set, 1​
​ @vol_set:​
​ ​ chan_setvolscale 127​
​ @no_vol_set:​
​ ​ chan_delay1​
​ chan_jump @loop​
.endmacro

In my macro I read from the sound script IO using chan_ioreadval 0 and write value to
the channel volscale cmd in my macro. I use volscale so that I can make this arbitrary
for each channel rather than try to balance channel volumes in the sound script IO
values.

I check if value is negative so I don't initialize my volscale to -1, but only update it if I set
the sound script IO. I don't need to check if the slot is less than 4 and preserve value as
it does not matter if it is reset or not in this case, I only care if the volume is set.

I can use this to set all channels at once to my target value if I replace the
chan_ioreadval <slot> with chan_ioreadval2 0, <slot>. This will make any channel with
this macro set use channels 0 slot to sync the volscale.

Set To Preset Value on Demand
Instead of setting a target value, we might want to set our effects to some preset value.
This is something I did in the previous tutorial, but with variations. Now we will do the
same thing on demand.

The calling convention is the same as before, we will regularly call our channel effect
update script, we just need to edit our script macros to use dyntables.

chn0_tsec0:​
​ chan_largenoteson​
​ chan_setlayer 0, test_ly0​
​ chan_setvol 100 ; gen by orig script​
​ chan_setinstr 7​
​ chan_update_dyn 0, eff_table_0 ; custom macro​
​ chan_end​
​
.macro chan_update_dyn, slot, dyntable​
​ chan_setdyntable dyntable​
​ @loop:​
​ ​ chan_ioreadval slot​
​ ​ .if slot < 4​
​ ​ ​ chan_iowriteval slot​
​ ​ .endif​
​ ​ chan_dyncall​
​ ​ chan_delay Whole ; check every 4 beats, Whole equal to 192​
​ chan_jump @loop​
.endmacro​
​

eff_table_0:​
​ sound_ref preset0​
​ sound_ref preset1​
; just short examples for this tut, use whatever you want​
preset0:​
​ chan_setreverb 60​
​ chan_setvolscale 127​
​ chan_end​
preset1:​
​ chan_setreverb 30​
​ chan_setvolscale 100​
​ chan_end

I am using a dyntable here with several preset channel effects. I create a dyntable and
dyncall based on the script IO value to choose a combination of effects. You can choose
any number of effects from just volume to an entire suite of channel parameters. Dyncall
already checks for an unset value so there is no need to add an extra safety check.

What's great about this is you can customize presets per channel and sequence without
having to write specific macros per channel or sequence. Simply change the dyntable
referenced in each channel and your effects and you have full control over it. You can
even bundle a generic set of effects and dyntable in a macro so that adding it takes just
one line.

Responsive Channel Management
Swapping channel data will allow us to change the notes playing, and enter new
musical sections. This is something that we can use in several ways, from simply
making an iterative sequence that only advances on demand to one that progressively
adds melodies as you reach certain gameplay milestones. How we use it is up to the
song setup and there are tons of possibilities. I will cover some likely scenarios and
setups that allow versatile use.

Progressive Sequence Advancement
In this setup, we will advance our sequence to the next section only when allowed to,
and otherwise will loop. This works best with something that has a short loop, or for a
song you can loop one measure at the tail end of a section that you don't expect to loop
for long. Try to make the advancement checkpoints close together and the respective
gameplay tolerant of music not exactly in sync.

_start:​

​ seq_setmutebhv 32​
​ seq_setmutescale 50​
​ seq_initchannels 0x7DFF​
tsec0:​
​ seq_startchannel 0, tsec0_chn0​
​ ; ... repeat for all channels​
​ seq_setvol 100​
​ seq_settempo 130​
; I create this new label so I don't init my channels on loop and

potentially interrupt their advancements​
tsec0_end:​
​ seq_delay 1536​
​ seq_jump tsec0_end ; added so that section 0 loops until I

allow it to progress​
​
/* This section would normally play with all these channels, but I am

skipping it​
This can create an issue because I have a tempo change at the start

of the new section​
I will show how to deal with this in another example.​
_start_20:​
​ seq_settempo 133​
tsec1:​
​ seq_startchannel 0, tsec1_chn0​
​ ; ... repeat for all channels​
​ seq_delay 9984​
​ seq_jump _start_20​
*/​
_end:​
​ seq_disablechannels 0x7DFF​
​ seq_end​
​
; I skipped tsec0_chn0 because it had a lot of bloat in my example

midi​
​
tsec0_chn1:​
​ chan_largenoteson​
​ chan_setlayer 0, tsec0_chn1_ly0​
​ chan_setlayer 1, tsec0_chn1_ly1​

​ chan_setlayer 2, tsec0_chn1_ly2​
​ chan_setvol 119​
​ chan_setpan 64​
​ chan_pitchbend 0​
​ chan_setinstr 44​
​ chan_delay 1536 ; delay is calculated by seq64​
​ repeat_chan_chk_adv_sec 0, tsec1_chn1, tsec0_chn1 ; my custom

macro​
​ chan_end​
​
; other tsec0 channels omitted for length​
​
; section 1 channels​
​
tsec1_chn1:​
​ chan_setlayer 0, tsec1_chn1_ly0​
​ chan_setlayer 1, tsec1_chn1_ly1​
​ chan_setlayer 2, tsec1_chn1_ly2​
​ chan_delay 9970​
​ chan_pitchbend 0​
​ chan_delay 14​
​ chan_jump tsec1_chn1 ; seq header no longer sets channels so we

have to loop channel data ourselves​
​
.macro repeat_chan_chk_adv_sec, slot, next_chan, cur_chan​
​ chan_ioreadval slot​
​ .if slot < 4​
​ ​ chan_iowriteval slot ; slot is reset if < 4​
​ .endif​
​ chan_bltz cur_chan ; repeat channel​
​ chan_jump next_chan ; adv to next channel​
.endmacro

What we do is simple: we check for state changes after our section ends and then we
jump to the next section’s channel if true. In order to make this work in the MML, you will
need to create multiple sections inside the midi. This works because of the manipulation
of the sequence object. Instead of advancing to the next section after a delay, I just
repeat the delay with a jump cmd, and then I comment out all of the other section data
in the sequence object.

As I mention in the comment, this causes an issue as we lose sequence data like the
tempo changes. Ideally, you would simply set the variation data for the sequence and
branch that way rather than use the channel data, but this is a contrived example for the
tutorial’s sake. If you want to branch via variation to advance sections, then you just
need to set up a variation read and branch in the header instead of a jump like I have.

_start:​
​ seq_setmutebhv 32​
​ seq_setmutescale 50​
​ seq_initchannels 0x7DFF​
tsec0:​
​ seq_startchannel 0, tsec0_chn0​
​ ; ... repeat for all channels​
​ seq_setvol 100​
​ seq_settempo 130​
​ seq_delay 1536​
​ seq_getvariation 0​
​ ; seq_bitand 1 ; you can use this to check for up to 8

different advancement flags if you wanted to for various sections​
​ seq_beqz tsec0 ; loop when no variation is set​
​
_start_20:​
​ seq_settempo 133​
tsec1:​
​ seq_startchannel 0, tsec1_chn0​
​ ; ... repeat for all channels​
​ seq_delay 9984​
​ seq_jump _start_20​
​
_end:​
​ seq_disablechannels 0x7DFF​
​ seq_end

Adding and Removing Channels on Demand
If you want to have a dynamic melody that changes depending on where you are (like in
DDD) you might want to add and remove channels dynamically. The original game does
this by editing the volume of entire channels with code, but I will cover how to do it
inside the sequence. The advantage of this is basically that you can manage which
channels get isolated in the sequence, rather than managing data tables in your C code,

which may or may not be a tiny bit more optimal but more importantly results in much
cleaner code.

tsec0_chn1:​
​ chan_largenoteson​
​ chan_setlayer 0, tsec0_chn1_ly0​
​ chan_setvol 119​
​ chan_setinstr 44

​ chan_setval 0x80

​ chan_iowriteval 4 ; the slot that will hold chan volume

​ volscale_loop ; my macro​
​ Chan_end

​
.macro RAMP_VOL, slot​
​ @repeat:​
​ chan_ioreadval 4 ; represents current volume scale​
​ chan_bgez @inc_vol​
​ chan_jump @end_ramp ; end the ramp at vol 0x80​
​ @inc_vol:​
​ chan_writeseq_nextinstr 1, 1 ; write value​
​ chan_setval 0​
​ chan_iowriteval 4 ; inc vol by 1​
​ chan_writeseq_nextinstr 1, 1 ; write volscale arg​
​ chan_setvolscale 0​
​ chan_delay1​
​ chan_jump @repeat​
​ ​
​ @end_ramp:​
​ chan_setval -1​
​ chan_iowriteval2 0, slot​
​ chan_end​
.endmacro​
​
.macro FADE_VOL, slot​
​ @repeat:​
​ chan_ioreadval 4 ; represents current volume scale​
​ chan_subtract 1​
​ chan_bgez @sub_vol​
​ chan_jump @end_fade ; end the fade at vol 0​

​ @sub_vol:​
​ chan_iowriteval 4 ; lower vol by 1​
​ chan_writeseq_nextinstr 0, 1 ; write volscale arg​
​ chan_setvolscale 0​
​ chan_delay1​
​ chan_jump @repeat​
​ ​
​ @end_fade:​
​ chan_setval -1​
​ chan_iowriteval2 0,slot​
​ chan_end​
.endmacro​
​
.macro chan_IO_set, slot, target​
​ chan_ioreadval2 0, slot​
​ chan_bltz @skip ; @ creates a static label​
​ chan_call target​
​ @skip:​
.endmacro​
​
vol_ramp:​
​ chan_ioreadval 4 ; check if vol needs ramping​
​ chan_bgez @@exec_ramp ; anything from 0 to 127​
​ chan_setval -1​
​ chan_iowriteval2 0, 0​
​ chan_end​
​ @@exec_ramp:​
​ RAMP_VOL 0​
​
vol_fade:​
​ chan_ioreadval 4 ; check if vol needs fading​
​ chan_subtract 1​
​ chan_bgez @@exec_fade ; 128 to 1​
​ chan_setval -1​
​ chan_iowriteval2 0, 1​
​ chan_end​
​ @@exec_fade:​
​ FADE_VOL 1​
​

.macro volscale_loop​
​ @chan_loop:​
​ chan_IO_set 0, vol_ramp ; slot 0 to ramp​
​ chan_IO_set 1, vol_fade ; slot 1 to fade​
​ chan_delay 1 ; set freq as you want​
​ chan_jump @chan_loop​
.endmacro

The setup for this effect is the same as previous examples but with two different
functions on different slots. These are checked via my macro chan_IO_set <slot>,
<target> by using different slots and different targets. The two actions are to fade the
volume to 0 from max, and to max out the volume from 0. Volume will start at max which
is 0x80, but we can start at zero with a variation if necessary.

The ramp and fade functions work by utilizing a channel sound script IO slot to hold the
current volume. I start my functions by checking if they need to be executed, and if they
do I will enter the ramp and fade loop macros. They will need execution if the volume
register is not at the expected place. For ramping, it's if the volume is below max, and
for fading it’s if the volume is above.

These macros each start by reading the slot value. For ramp, I check if the value is non
negative, I increase it by 1 and then write that value to the volscale cmd and slot.
chan_writeseq <imm>, <target>, <offset> will write imm + value to target + offset. This
allows me to increase value by one and write it to the chan_setval cmd. This is the only
way to increase the value. I then write it to the slot and volscale cmd. I delay for one
update and repeat.

After ramping, the value will be negative at 0x80, which is a volscale of just over 1.0 and
our max volume. When this happens we will hit our branch condition, set the value to -1
and write it to the slot which will exit the function.

The fade function is basically the same as ramping, but instead of adding one with
chan_writeseq I use chan_subtract <imm> right after reading the register. The branch
conditions are when value is zero for the start of the function, and less than zero for the
loop. This is because the loop subtracts before writing.

This ramping requires each channel to use its own slot to store the volume, otherwise
they would get in each other’s way while executing the loops, but I can use a common
start condition since once the loop starts it is locked in. I have to check for above or less
than zero instead of just at the bounds in case there are multiple sections, which can
interrupt the fade/ramp processing whenever the section starts.

The requirement to loop at the end means I cannot have these loops in any channel
with cmds throughout the sequence, which generally makes this inferior to doing the
same thing with code. If you were to do this with code, I would recommend you still use
MML scripting, but instead use script IO slots to flag which channels should be
faded/ramped. For example if you init the slot IO channels to -128 like I did, you don’t
have to keep track of what channels need fading on a per sequence basis, you can
check for the slot value instead.

Sequence Timing and Game Syncing
If you want to create gameplay that syncs to music then you would normally create a
timer and then try to sync it to the timing of the musical beat. An example of this is beat
block objects. This method works fine, but there is a possibility of the game going out of
sync with the music. As with the previous example with adding/removing channels, this
is mostly a technique you would use for finer and more accurate control, and to simplify
code by putting the details in the sequence.

Syncing Outputs To a Beat
Syncing an output to a beat is easy, you can choose to do it with a channel output or a
variation, it is up to what you decide is easier to manage from the code side.

_start:​
​ seq_setmutebhv 32​
​ seq_setmutescale 50​
​ seq_initchannels 0x0005​
qwerqwer:​
​ seq_startchannel 0, half_chn0​
​ seq_setvol 108​
beat_set_loop:​
​ seq_assign_var 0; init​
​ seq_delay Quarter*4 ; 4 beats of nothing​
​ seq_assign_var 1; beat 1​
​ seq_delay Quarter​
​ seq_assign_var 2; beat 2​
​ seq_delay Quarter​
​ seq_assign_var 3; beat 3​
​ seq_delay Quarter​
​ seq_assign_var 4; beat 4​
​ seq_delay Quarter​
​ seq_jump beat_set_loop ; repeat​

​ seq_disablechannels 0x0005​
​ seq_end

.macro seq_assign_var, val

​ seq_setval val

​ seq_setvariation 0

.endmacro

In this example I have set up my variation to match the hits necessary for a beat block,
assuming that my sequence starts immediately at time zero. I set the variation to zero,
and then wait 4 beats. I then increase the variation by one each beat and loop. The
advantage to this over timing is that if I were to ever edit the tempo this would
automatically sync, and I could also decide to change the beat structure and it would
work just fine. You can do the same with channels, just set the scriptIO slot value
instead.

half_chn0:​
​ chan_largenoteson​
​ chan_setlayer 0, half_chn0_ly0​
​ chan_setinstr 12​
chan_beat_loop:​
​ chan_setval 0​
​ chan_iowriteval 0​
​ chan_delay Quarter*4​
​ chan_setval 1​
​ chan_iowriteval 0 ; beat 1​
​ chan_delay Quarter​
​ chan_setval 2​
​ chan_iowriteval 0 ; beat 2​
​ chan_delay Quarter​
​ chan_setval 3​
​ chan_iowriteval 0 ; beat 3​
​ chan_delay Quarter​
​ chan_setval 4​
​ chan_iowriteval 0 ; beat 4​
​ chan_delay Quarter​
​ chan_jump chan_beat_loop

Syncing Outputs To Data Finishing
In certain instances, you may want to test if a section or channel is finished. There are
built in MML macros to do this called seq_testchdisabled <chan> and
chan_testlayerfinished <layer>. Both of these will set value to 1 if the target is finished,
and 0 otherwise. You will want to use this when you are not sure when the piece of
channel data is going to start, for example in the case of sfx, or if you want to send
outputs to time gameplay to it, like in a cutscene.

.poll_023589:​
chan_delay1​
chan_ioreadval 0 ; force stop if slot is true​
chan_bltz .skip_023589​
 chan_beqz .force_stop_023589​
 chan_jump .start_playing_023589​
.skip_023589:​
chan_testlayerfinished 0 ; stop playing if layer 0 has finished​
chan_beqz .poll_023589​
chan_jump .main_loop_023589​
.force_stop_023589:​
chan_freelayer 0​
chan_freelayer 1​
chan_freelayer 2​
chan_jump .main_loop_023589

Here is an excerpt from 00_sound_player.s where we test if a layer is finished. Layer 0
in this channel is used as a signal to end the sound effect. It frees the layers and then
returns to the main loop, which is where it waits for new requests to play a new sound
effect. It can be forced to stop with an IO value, but otherwise it will auto stop when a
layer is finished which will allow new sfx to be played.

Composing
With scripting, we were mostly worried about being able to control and respond to
changes in the sequence with game code to create responsive sequences. With
composing we are interested in making static sequenced music as optimal as possible,
with as much control over the sound as we can get.

I covered many complex effects and sequence control in my previous tutorial, which you
should definitely read if you have not (link here). The main focus of this tutorial is to

https://docs.google.com/document/d/19g7B-RCEde8AP1UEJV00R5rfstBqD5H0pZn_0jpxe7A/edit

consolidate special effects into simple and easy to use events, and to create special
events that could only be done by using the special abilities of MML.

Channel Effect Lerp
A lerp is a shorthand term for linear interpolation. This is when we change from one
value to another over evenly paced steps. This is often done in sequences with volume,
or panning to create dynamics which is a musical term that basically means music that
changes.

I have gone over setting values and even ramping/fading values in this tutorial in a
responsive manner, but if we are to do this for composition, it needs to exist anywhere
in the sequence at any time, and needs to be added via a midi CC (or group) if possible.
We also want to be able to do this without interrupting normal channel channel
processing.

Simple Lerp With Manual Inputs
This is a simple effect where we will lerp from a given start value to an end value on a
single effect. We can do this with a lot of normal event commands, or a bit of MML
scripting. The downside of using scripting is it will block other events from executing
while it happens.

chan0_tsec0:​
chan_largenoteson​
chan_setlayer 0, layer0_test​
chan_setinstr 4​
chan_setvol 100​
chan_delay 50​
chan_lerp_pan 64, 127, 30​
chan_delay 600 - 30 ; subtract prev effect time, not ideal but

limitation of seq64 conversion​
chan_setvol 80​
...repeat for rest of chan data​
​
.macro chan_lerp_pan, start, end, length

​ step equ max(int(abs(end-start)/int(2*length)), 1) ; calc

our step change

​ len equ min(int(abs(end-start)/step), 2*length, 128) ; don't

go over 128 or min step change

​

​ chan_setval start

​ chan_writeseq 0, @pan_val, 1

​ chan_loop len

​ @pan_val:

​ chan_setpan start

​ chan_setval 0

​ chan_readseq @pan_val + 1

​ .if end < start

​ ​ chan_subtract abs(step)

​ ​ chan_writeseq 0, @pan_val, 1

​ .else

​ ​ chan_writeseq step, @pan_val, 1

​ .endif

​ chan_delay Sixteenth ; you can set it how you please

​ chan_loopend

​ chan_setpan end

.endmacro

We execute this lerp by using a macro that calculates the step change and then loops
the specified number of times, increasing our panning by step each loop. If the step was
negative, we would use subtract instead, we can build this into the macro using the .if
directive. I set the pan with a writeseq at the start in the case where you choose to loop
this macro so that we always know where the pan is starting. If we don’t do this, on loop
we would start from the last end value instead of our start.

I coded this with the idea of creating it entirely with midi CC events, so the max input is
only 127, which maxes the pan range. If we want to do longer lerps, you need to change
the frequency, which is controlled by the delay. You can hardcode this or make it an
extra argument to the macro.

Our lerp is almost entirely contained within the macro, but we are limited with timing on
future events due to added delays seq64 cannot account for. So we need to subtract the
lerp length from the next delay to get back into sync. This is annoying but is the most I
could do with current tooling.

If you know the next event is going to be a delay longer than your lerp, which should
always be the case if you're using this lerp, then you can code in a few extra lines to
automate this at the cost of extra processing.

.macro chan_lerp_pan, start, end, length​

... same as prev macro​

chan_setval 0​
chan_readseq @macro_end +1​
chan_subtract len​
chan_writeseq 0, @macro_end, 1​
@macro_end:​
.endmacro

We add in a chan_writeseq to reduce the delay by len. This will allow us to create this
lerp using 3 midi CC events only, and would mean it is something we can conserve
during importing and exporting files with seq64.

Continuous Lerps With Manual Composition
If we abandon the use of seq64 conversion for our lerps, we have more flexibility over
what we can do. This doesn't mean we are going to write the sequence by hand, but we
will have to write in the lerp event arguments by hand and will have to convert the seq64
static events to something new.

The basic idea behind continuous lerps is the same as with continuous updates. Instead
of using long delays and statically placed channel events, we are going to use loops
and scripting to change parameters as needed. How we do this is by converting the
channel data to a new format so that multiple events can occur at the same time.

.macro ChanDat, start, length, type, arg, effect​

.halfword start​

.byte length, type, arg, effect​

.endmacro

; Just a basic explanation, not full working macro which will have

tons of ifs in for each type

We create an array of data structs that will hold our effects and read from that instead of
static channel data. How it works is that we execute the effect specified on the required
data type by using dyntables to choose functions that will set the parameters we need,
then we will advance to the next ChanDat struct after delay has passed.

Due to the complexity of this, I don’t really recommend ever doing this. I have a working
prototype of this made, but like in the Adding and Removing Channels on Demand
section, this is something better done with code or just with keeping static cmds as the
processing power and sequence bloat of it is much worse than doing the same with C
code, even if you have to use data tables to manage everything.

Sidechain Composition
Sidechaining is basically when you trigger events using other tracks. This is helpful to
reduce the complexity of composition, and to create better sounding tracks in an
automated manner.

The goal of a sidechain is to make channel management easier, so we ideally want our
sidechain system to be easy. Unfortunately as we've seen with lerps, actually controlling
effects continuously is difficult, and intrusive to the static composition midi generally has.
In order to use sidechains, we need to continuously monitor our channel effects and be
able to respond when needed. As usual, this is a big headache when events are
common and not a big deal when they're sparse.

Single Channel Volume Sidechain
A common use of side chains is to use the kick to control bassline volume. These are
tracks that hopefully don't have too much dynamics inside the channel. If you're
composing, try to keep volume changes on the notes instead of in channels.

attack equ 80​
​
register_side_kick:​
​ .byte 127​
​
.macro chan_set_sidechain, vol​
​ ; lower volume in two steps​
​ chan_setval vol-int(attack/2)​
​ chan_writeseq 0, register_side_kick, 0​
​ chan_delay 4​
​ chan_setval vol - attack​
​ chan_writeseq 0, register_side_kick, 0​
​ chan_delay Sixteenth - 4​
​ ​
​ ; restore volume​
​ chan_setval 127​
​ chan_writeseq 0, register_side_kick, 0​
.endmacro​
​
.macro chan_update_volscale​
​ @macro_start:​
​ chan_setval 0​

​ chan_readseq register_side_kick​
​ chan_writeseq 0, @volscale, 1​
​ @volscale:​
​ chan_setvolscale 127​
​ chan_delay1​
​ chan_jump @macro_start​
.endmacro

​
tsec0_chn7:​
​ chan_largenoteson​
​ chan_setlayer 0, tsec0_chn7_ly0​
​ chan_setpan 64​
​ chan_setvol 120​
​ chan_pitchbend 0​
​ chan_setinstr 24​
​
​ @side_jump:​
​ chan_set_sidechain 127​
​ chan_delay 60-Sixteenth​
​ chan_set_sidechain 127​
​ ; chan_delay 12-Sixteenth ; This is zero​
​ chan_set_sidechain 127​
​ chan_delay 108-Sixteenth​
​ chan_set_sidechain 127​
​ chan_delay 36-Sixteenth​
​ chan_set_sidechain 127​
​ chan_delay 168-Sixteenth​
​ chan_jump @side_jump​
​
​ chan_delay 5760​
​ chan_end

​
tsec0_chn10:​
​ chan_largenoteson​
​ chan_setlayer 0, tsec0_chn10_ly0​
​ chan_setlayer 1, tsec0_chn10_ly1​
​ chan_setvol 53​
​ chan_setpan 106​
​ chan_pitchbend 0​

​ chan_setinstr 1​
​ chan_update_volscale​
​ chan_end

Here we update our bassline using channel events in the kick channel. We have to
manually place these events as there is no other way to know when to lower. We can
place these in the midi editor easily as they only require one argument. If we are doing a
simple kick loop then we can loop the events on the layer end to save space, and seq64
is usually smart enough to loop channel data on its own anyway.

The tuning of how your sidechain affects volume should be set up in the macro
chan_set_sidehcain. I chose to use the param as a return volume, but you can do other
things such as set the attack volume. When you add these macros, make sure you set
the optimizer Quantize setting to 0 for Other in seq64 or else it may remove cmds with
the same argument.

The setup is quite simple compared to earlier examples. We write to a register, and then
read that and use it to set the volume scale in another channel. We can add this
sidechain to anything else and it should work easily. When you do this, make sure you
define these macros inside the MML file instead of in the seq_macros.asm file. It will
create issues if you reference a global variable inside a macro in a generic file.

Using this sidechain means you cannot have sidechain effects in the kick channel, and
normal events after sidechain control in other channels. If you need these things, you
will have to use the continuous event control scheme laid out in the continuous lerp
section, and add a function for sidechain control and writing.

The Audio Thread
The audio thread contains all the code that updates sound processing. It runs at 60 fps
and executes audio tasks on the RSP. Audio tasks are the parallel to gfx tasks if you're
familiar with how graphics are generated on the N64. To make it brief, the game
generates a list of microcode cmds and sends it to the RSP. This task list is made of ABI
cmds, which stands for Audio Binary Interface. While I don't particularly care about how
the ABI works (at least for this tutorial series), it is important to understand how we
generate it.

In order to create an audio task, we need to process all the sounds currently happening
in game, and synthesize them to create a list of sound data with the applicable
transformations to play. The sounds from all different sources are combined in
synthesis_execute(u64 *cmdBuf, s32 *writtenCmds, s16 *aiBuf, s32 bufLen) located in

/src/audio/synthesis.c. This function gathers these by processing our sequences, which
will gather all the notes currently being played. Then all the notes will be processed,
which will create the list of all sounds that need to be played and how to transform them.
Finally all the sounds are synthesized together (the specifics are not that important for
us) and an audio task is created.

For the purposes of control over sequences and sound, we have two main places we
can access to write custom code without modifying this overall process, which is
sequence processing and note processing.

Sequence Processing Editing
All of the above MML control we added via macros, we can add in with custom code to
the sequence processing script. We can get finer control over ins and outs of the
sequence script and consolidate multi line macros to one.

More interestingly though, we can add in new effects that are not possible with MML
alone. MML is turing complete, so it technically can do everything, but I am speaking
about things that cannot be executed with just one or two macros and extra data. In
general, this is extra control in layers or sequence objects, and finer continuous control
in MML objects that doesn't require us to rewrite the entire script like continuous
channel updates do.

Sequence Dyntables
While we could use variations, bitand and branching to do the same effect, a dyntable is
a more direct way of controlling sequence flow. We can add in a dyntable by basically
copying the same way channels do it. We need to allocate a set dyntable, a dyncall, and
dynset channel cmds in our macro file.

We need to add in the code for our cases to the sequence processing loop. We need to
choose cmd bytes that are unused and after that we can basically copy what channels
do for each cmd except with swapping seqChannel references to seqPlayer ones.

case 0xc1: // seq_dyntable​
​ if (value != -1) {​
​ ​ seqPlayer->dynTable = (void *) (GetSeqorExtData(seqPlayer)

+ m64_read_s16(state));​
​ }​
​ break;​
case 0xc2: // seq_dyncall​
​ if (value != -1) {​

​ ​ seqData = (*seqPlayer->dynTable)[value];​
​ ​ state->depth++, state->stack[state->depth - 1] =

state->pc;​
​ ​ sp5A = ((seqData[0] << 8) + seqData[1]);​
​ ​ state->pc = GetSeqorExtData(seqPlayer) + sp5A;​
​ }​
​ break;​
case 0xc3: // seq_dynsetdyntable​
​ sp5A = (u16)((((*seqPlayer->dynTable)[value])[0] << 8) +

(((*seqPlayer->dynTable)[value])[1]));​
​ seqPlayer->dynTable = (void *) (GetSeqorExtData(seqPlayer) +

sp5A);​
​ break;​
...​
case 0x10: // seq_dynsetchannel​
​ if (value != -1) {​
​ ​ seqData = (*seqPlayer->dynTable)[value];​
​ ​ sp5A = ((seqData[0] << 8) + seqData[1]);​
​ ​ sequence_channel_enable(seqPlayer, loBits,

GetSeqorExtData(seqPlayer) + sp5A);​
​ }​
​ break;

So with our new dyntables, we can execute more complicated sequence branching
logic. This would be helpful in a sequence with many different variations that hold
different channel data, or for controlling preset channel parameters like we previously
did with channel dyntables.

Sequence Dyntable Examples
We can choose what section to play in our sequence using value and a dyntable. We
can use variations with this to get easy control over sequence flow. Generally you would
want to use this for setting channels or choosing sections of a sequence but you could
also use it for preset effects such as transposition, tempo and volume.

tsec0:​
​ seq_startchannel 0, tsec0_chn0​
​ ...; other channels​
​ seq_settempo 132​

​ seq_setval -1​
​ seq_setvariation 0​
​ ; loop for just first section, has a bit of time where nothing

is looping​
​ seq_setdyntable seq_dyntable​
​ ​
​ seq_loop 6​
​ ​
​ seq_loop 255​
​ seq_getvariation 0​
​ seq_dyncall​
​ seq_delay1​
​ seq_loopend​
​ ​
​ seq_loopend​
​ ​
​ seq_delay 1536-(255*6)​
tsec1:​
​ seq_startchannel 0, tsec1_chn0​
​ ... ; other channels​
​ @loop:​
​ seq_getvariation 0​
​ seq_dyncall​
​ seq_delay1​
​ seq_jump @loop​
​ ... ; end seq object​
​
seq_dyntable:​
​ sound_ref effects_0​
​ sound_ref effects_1​
​ sound_ref effects_2​
​ sound_ref effects_3​
​ sound_ref effects_4​
; all the effects are similar to this, I’ll skip them to save space​
effects_0:​
​ seq_settempo 102​
​ seq_transpose -2​
​ seq_setvol 100​
​ seq_end

We use the dyntable here basically the same as we had used the dyntables earlier in
the Set To Preset Value on Demand section. I have a bunch of target preset settings
here that affect the entire sequence, and can select them on demand with my code.

Lerp Events
Lerps are possible in default MML, but it is much more convenient to have a dedicated
cmd for it. I will cover how to create channel lerps, and it should be reasonably easy to
use this for other objects if you choose.

struct SequenceChannel​
{​
...​
u8 Lerp;​
u8 LerpVal;​
s16 LerpStep;​
u16 LerpTime;​
f32 LerpFloat;​
}

I add these lerp variables to the SequenceChannel struct to control my lerp. I have a
value and a float variable for the different types on various cmds.

.macro chan_lerp, type, start, length, end​
​ .byte 0xd5, type, start​
​ .halfword length​
​ step equ max(int((abs(end-start)*256.0)/length), 1) ; calc

our step change​
​ .if end > start​
​ ​ .halfword step​
​ .else​
​ ​ .halfword -step​
​ .endif​
.endmacro

I set up my lerp macro with 4 arguments, which is similar to the last lerp macro except
with an extra type parameter. This param will control which field I am going to lerp over
in the seqChannel.

case 0xd5: // chan_lerp​
​ seqChannel->Lerp = m64_read_u8(state);​
​ // start​
​ seqChannel->LerpVal = m64_read_u8(state);​
​ seqChannel->LerpFloat = (f32) seqChannel->LerpVal;​
​ // time​
​ seqChannel->LerpTime = m64_read_s16(state);​
​ // (end - start) / time​
​ seqChannel->LerpStep = m64_read_s16(state);​
​ break;

I add the new cmd to my sequence channel processing function. I just read variables
here, the calculation portion was relegated to the macro.

if (seqChannel->Lerp){​
​ seqChannel->LerpTime--;​
​ seqChannel->LerpFloat += seqChannel->LerpStep / 256.0f;​
​ switch(seqChannel->Lerp){​
​ ​ case 1:​
​ ​ ​ seqChannel->pan = seqChannel->LerpFloat/128.0f;​
​ ​ ​ break;​
​ ​ case 2:​
​ ​ ​ seqChannel->volume = seqChannel->LerpFloat/128.0f;​
​ ​ ​ break;​
​ ​ case 3:​
​ ​ ​ seqChannel->freqScale =

seqChannel->LerpFloat/128.0f;​
​ ​ ​ break;​
​ ​ case 4:​
​ ​ ​ seqChannel->volumeScale =

seqChannel->LerpFloat/128.0f;​
​ ​ ​ break;​
​ }​
​ if(!seqChannel->LerpTime){​
​ ​ seqChannel->Lerp = 0;​
​ }​
}

Finally I add the lerp calculation to my channel processing. I add this before it processes
cmds. I check if I need lerp, calculate the step change, and then apply that change to
the chosen parameters. Then I disable the lerp if the time is zero.

Using this is as simple as before in the Simple Lerp With Manual Inputs section. The big
difference is we have less complexity and more precision with our changes.

Conclusion
This tutorial should cover basically anything you want to do with sequence scripting and
probably a lot more. If you have any questions about the content or have suggestions to
improve this or any other tutorial contact me in places where I can be contacted.

●​ https://www.discordapp.com/uers/scutte
●​ https://romhacking.com/user/jesusyoshi54
●​ https://www.youtube.com/c/jesusyoshi54
●​ https://gitlab.com/scuttlebugraiser

https://discordapp.com/users/155798467418128384
https://romhacking.com/user/jesusyoshi54
https://www.youtube.com/c/jesusyoshi54
https://gitlab.com/scuttlebugraiser

	Intro
	Scripting
	Accessing Sequences in Code
	Continuous Script Updates
	Responsive Channel Effects
	Set Effect To Target On Demand
	Set To Preset Value on Demand

	Responsive Channel Management
	Progressive Sequence Advancement
	Adding and Removing Channels on Demand

	Sequence Timing and Game Syncing
	Syncing Outputs To a Beat
	Syncing Outputs To Data Finishing

	Composing
	Channel Effect Lerp
	Simple Lerp With Manual Inputs
	Continuous Lerps With Manual Composition

	Sidechain Composition
	Single Channel Volume Sidechain

	The Audio Thread
	Sequence Processing Editing
	Sequence Dyntables
	Sequence Dyntable Examples
	Lerp Events

	Conclusion

