
Prometheus Client Library Guidelines

This document covers what functionality and API Prometheus client libraries should offer, with
the aim of consistency across libraries, making the easy use cases easy and avoiding offering
functionality that may lead users down the wrong path.

There are 4 languages supported at the time of writing, so we’ve gotten a good sense by now of
how to write a client. These guidelines aim to help authors of new client libraries produce good
libraries.

Conventions
Overall structure
Standard metrics types

Counter
Gauge
Summary
Histogram
Labels

Metric names
Metric descriptions/help
Exposition
Packaging and Dependencies
Performance Considerations

Conventions

MUST/MUST NOT/SHOULD/SHOULD NOT/MAY have the meanings given in
https://www.ietf.org/rfc/rfc2119.txt

In addition ENCOURAGED means that a feature is desirable for a library to have, but it’s okay if
it’s not present. In other words, a nice to have.

Things to keep in mind

●​ Take advantage of each language’s features
●​ The common use cases should be easy
●​ The correct way to do something should be the easy way
●​ More complex use cases should be possible

https://www.ietf.org/rfc/rfc2119.txt

The common use cases are (in order):

●​ No-label counters spread liberally around libraries/applications
●​ Timing functions/blocks of code in Summaries/Histograms
●​ Gauges to track current states of things (and their limits)
●​ Monitoring of batch jobs

Overall structure

Clients MUST be written to be callback based internally. Clients SHOULD generally follow the
structure described here.

The key class is the Collector. This has a method (typically called ‘collect’) that returns zero or
more metrics and their samples. Collectors get registered with a CollectorRegistry. Data is
exposed by passing a CollectorRegistry to a class/method/function “bridge”, which returns the
metrics in a format Prometheus supports. Every time the CollectorRegistry is scraped it must
callback to each of the Collectors’ collect method.

The interface most users interact with are the Counter, Gauge, Summary, and Histogram
Collectors. These represent a single metric, and should cover the vast majority of use cases
where a user is instrumenting their own code.

More advanced uses cases (such as proxying from another monitoring/instrumentation system)
require writing a custom Collector. Someone may also want to write a “bridge” that takes a
CollectorRegistry and produces data in a format a different monitoring/instrumentation system
understands, allowing users to only have to think about one instrumentation system.

CollectorRegistry SHOULD offer register()/unregister() functions, and a Collector SHOULD be
allowed to be registered to multiple CollectorRegistrys.

Client libraries MUST be thread safe.

For non-OO languages such as C, client libraries should follow the spirit of this structure as
much as is practical.

Naming

Client libraries SHOULD follow function/method/class names mentioned in this document,
keeping in mind the naming conventions of the language they’re working in. For example,
set_to_current_time() is good for a method name Python, but SetToCurrentTime() is better in Go
and setToCurrentTime() is the convention in Java. Where names differ for technical reasons

(e.g. not allowing function overloading), documentation/help strings SHOULD point users
towards the other names.

Libraries MUST NOT offer functions/methods/classes with the same or similar names to ones
given here, but with different semantics.

Standard metrics types

Counter, Gauge, Summary and Histogram are the primary interface by users.

Counter and Gauge MUST be part of the client library. At least one of Summary and Histogram
MUST be offered.

These should be primarily used as file-static variables, that is, global variables defined in the
same file as the code they’re instrumenting. The client library SHOULD enable this. The
common use case is instrumenting a piece of code overall, not a piece of code in the context of
one instance of an object. Users shouldn’t have to worry about plumbing their metrics
throughout their code, the client library should do that for them (and if it doesn’t, users will write
a wrapper around the library to make it “easier” - which rarely tends to go well).

There MUST be a default CollectorRegistry, the standard metrics MUST by default implicitly
register into it with no special work required by the user. There MUST be a way to have metrics
not register to the default CollectorRegistry, for use in batch jobs and unittests. Custom
collectors SHOULD also follow this.

Exactly how the metrics should be created varies by language. For some (Java, Go) a builder
approach is best, whereas for others (Python) function arguments are rich enough to do it in one
call.

For example in the Java Simpleclient we have:
import io.prometheus.client.Counter;​
​

class YourClass {​
 static final Counter requests = Counter.build()​
 .name("requests_total")​
 .help("Requests.").register();​
}

This will register requests with the default CollectorRegistry. By calling build() rather than
register() the metric won’t be registered (handy for unittests), you can also pass in a
CollectorRegistry to register() (handy for batch jobs).

Counter

Counter is a monotonically increasing counter. It MUST NOT allow the value to decrease,
however it MAY be reset to 0 (such as by server restart).

A counter MUST have the following methods:

inc(): Increment the counter by 1
inc(double v): Increment the counter by the given amount. MUST check that v >= 0.

A counter is ENCOURAGED to have:
A way to count exceptions throw/raised in a given piece of code, and optionally only certain
types of exceptions. This is count_exceptions in Python.

Counters MUST start at 0.

Gauge

Gauge represents a value that can go up and down.

A gauge MUST have the following methods:

inc(): Increment the gauge by 1
inc(double v): Increment the gauge by the given amount
dec(): Decrement the gauge by 1
dec(double v): Decrement the gauge by the given amount
set(double v): Set the gauge to the given value

Gauges MUST start at 0, you MAY offer a way for a given gauge to start at a different number.

A gauge SHOULD have the following methods:

set_to_current_time(): Set the gauge to the current unixtime in seconds.

A gauge is ENCOURAGED to have:

A way to track in-progress requests in some piece of code/function. This is track_inprogress in
Python.

A way to time a piece of code and set the gauge to its duration in seconds. This is useful for
batch jobs. This is startTimer/setDuration in Java and the time() decorator/context manager in
Python. This SHOULD match the pattern in Summary/Histogram (though ‘set’ rather than
‘observe’).

Summary

A summary samples observations (usually things like request durations) over sliding windows of
time and provides instantaneous insight into their distributions, frequencies, and sums.

A summary MUST NOT allow the user to set “quantile” as a label name, as this is used
internally to designate summary quantiles. A summary is ENCOURAGED to offer quantiles as
exports, though these can’t be aggregated and tend to be slow. A summary MUST allow not
having quantiles, as just _count/_sum is quite useful and this MUST be the default.

A summary MUST have the following methods:

observe(double v): Observe the given amount

A summary SHOULD have the following methods:
Some way to time code for users in seconds. In Python this is the time() decorator/context
manager. In Java this is startTimer/observeDuration. Units other than seconds MUST NOT be
offered (if a user wants something else, they can do it by hand). This should follow the same
pattern as Gauge/Histogram.

Summary _count/_sum MUST start at 0.

Histogram

Histograms allow aggregatable distributions of events, such as request latencies. This is at its
core a counter per bucket.

A histogram MUST NOT allow “le” as a user-set label, as “le” is used internally to designate
buckets.

A histogram MUST offer a way to manually choose the buckets. Ways to set buckets in a
linear(start, width, count) and exponential(start, factor, count) fashion SHOULD be offered.
Count MUST exclude the +Inf bucket.

A histogram SHOULD have the same default buckets as other client libraries. Buckets MUST
NOT be changeable once the metric is created.

A histogram MUST have the following methods:

observe(double v): Observe the given amount

A histogram SHOULD have the following methods:
Some way to time code for users in seconds. In Python this is the time() decorator/context
manager. In Java this is startTimer/observeDuration. Units other than seconds MUST NOT be
offered (if a user wants something else, they can do it by hand). This should follow the same
pattern as Gauge/Summary.

Histogram _count/_sum and the buckets MUST start at 0.

Further metrics considerations

Providing additional functionality in metrics beyond what’s documented above as makes sense
for a given language is ENCOURAGED.
If there’s a common use case you can make simpler then go for it, as long as it won’t encourage
undesirable behaviours (such as suboptimal metric/label layouts, or doing computation in the
client).

Labels

Labels are one of the most powerful aspects of Prometheus, but easily abused. Accordingly
client libraries must be very careful in how labels are offered to users. See
http://prometheus.io/docs/practices/instrumentation/#use-labels and
http://prometheus.io/docs/practices/instrumentation/#do-not-overuse-labels

Client libraries MUST NOT under any circumstances allow users to have different label names
for the same metric for Gauge/Counter/Summary/Histogram or any other Collector offered by
the library.
If your client library does validation of metrics at collect time, it MAY also verify this for custom
Collectors.

While labels are powerful, the majority of metrics will not have labels. Accordingly the API
should allow for labels but not dominate it.

A client library MUST allow for optionally specifying a list of label names at
Gauge/Counter/Summary/Histogram creation time. A client library SHOULD support any

http://prometheus.io/docs/practices/instrumentation/#use-labels
http://prometheus.io/docs/practices/instrumentation/#do-not-overuse-labels

number of label names. A client library MUST validate that label names meet the requirements
in http://prometheus.io/docs/concepts/data_model/#metric-names-and-labels

The general way to provide access to labeled dimension of a metric is via a labels() method that
takes either a list of the label values or a map from label name to label value and returns a
“Child”. The usual .inc()/.dec()/.observe() etc. methods can then be called on the Child.

The Child returned by labels() SHOULD be cacheable by the user, to avoid having to look it up
again - this matters in latency-critical code.
Metrics with labels SHOULD support a remove() method with the same signature as labels()
that will remove a Child from the metric no longer exporting it, and a clear() method that
removes all Children from the metric. These invalidate caching of Children.

There SHOULD be a way to initialize a given Child with the default value, usually just calling
labels(). No-labels metrics MUST always be initialized. See
http://prometheus.io/docs/practices/instrumentation/#avoid-missing-metrics

Metric names

Metric names must match the restrictions in
http://prometheus.io/docs/concepts/data_model/#metric-names-and-labels. As with label
names, this MUST be met for uses of Gauge/Counter/Summary/Histogram and in any other
Collector offered with the library.

Many client libraries offer setting the name in three parts: namespace_subsystem_name of
which only the “name” is mandatory.

Dynamic/generated metric names or subparts of metric names MUST be discouraged, except
when a custom Collector is proxying from other instrumentation/monitoring systems.
Generated/dynamic metric names are a sign that you should be using labels instead.

Metric descriptions/help

Gauge/Counter/Summary/Histogram MUST require metric descriptions/help to be provided.
Any custom Collectors provided with the client libraries MUST have descriptions/help on their
metrics.

It is suggested to make it a mandatory argument, but not to check that it’s of a certain length as
if someone really doesn’t want to write docs we’re not going to convince them otherwise.
Collectors offered with the library (and indeed everywhere we can within the ecosystem)
SHOULD have good metric descriptions, to lead by example.

http://prometheus.io/docs/concepts/data_model/#metric-names-and-labels
http://prometheus.io/docs/practices/instrumentation/#avoid-missing-metrics
http://prometheus.io/docs/concepts/data_model/#metric-names-and-labels

Standard and runtime collectors

Client libraries SHOULD offer what they can of the Standard exports, documented at
https://docs.google.com/document/d/1Q0MXWdwp1mdXCzNRak6bW5LLVylVRXhdi7_21Sg15x
Q/edit

In addition, client libraries are ENCOURAGED to also offer whatever makes sense in terms of
metrics for their language’s runtime (e.g. Garbage collection stats).

These SHOULD be implemented as custom Collectors, and registered by default on the default
CollectorRegistry. There SHOULD be a way to disable these, as there are some very niche use
cases where they get in the way.

Exposition

Clients MUST implement one of the exposition formats documented at
http://prometheus.io/docs/instrumenting/exposition_formats/.

Clients MAY implement more than one format. There SHOULD be a human readable format
offered.

If in doubt, go for the text format. It doesn’t have a dependency (protobuf), tends to be easy to
produce, is human readable and the performance benefits of protobuf are not that significant for
most use cases.

Reproducible order of the exposed metrics is ENCOURAGED (especially for human readable
formats) if it can be implemented without a significant resource cost.

Unit tests

Client libraries SHOULD have unit tests covering the core instrumentation library and exposition.

Client libraries are ENCOURAGED to offer ways that make it easy for users to unit-test their use
of the instrumentation code. For example, the CollectorRegistry.get_sample_value in Python.

Packaging and Dependencies

Ideally, a client library can be included in any application to add some instrumentation, without
having to worry about it breaking the application.

https://docs.google.com/document/d/1Q0MXWdwp1mdXCzNRak6bW5LLVylVRXhdi7_21Sg15xQ/edit
https://docs.google.com/document/d/1Q0MXWdwp1mdXCzNRak6bW5LLVylVRXhdi7_21Sg15xQ/edit
http://prometheus.io/docs/instrumenting/exposition_formats/

Accordingly, caution is advised when adding dependencies to the client library. For example, if a
user adds a library that uses a Prometheus client that requires version 1.4 of protobuf but the
application uses 1.2 elsewhere, what will happen?

It is suggested that where this may arise, that the core instrumentation is separated from the
bridges/exposition of metrics in a given format. For example, the Java simpleclient “simpleclient”
module has no dependencies, and the “simpleclient_servlet” has the HTTP bits.

Performance Considerations

As client libraries must be thread-safe, some form of concurrency control is required and
consideration must be given to performance on multi-core machines and applications.

In our experience the least performant is mutexes.
Processor atomic instructions tend to be in the middle, and generally acceptable.
Approaches that avoid different CPUs mutating the same bit of RAM work best, such as the
DoubleAdder in Java’s simpleclient. There is a memory cost though.

As noted above, the result of labels() should be cacheable. The concurrent maps that tend to
back metric with labels tend to be relatively slow. Special-casing metrics without labels to avoid
labels()-like lookups can help a lot.

Metrics SHOULD avoid blocking when they are being incremented/decremented/set etc. as it’s
undesirable for the whole application to be held up while a scrape is ongoing.

Having benchmarks of the main instrumentation operations, including labels, is ENCOURAGED.

Resource consumption, particularly RAM, should be kept in mind when performing exposition.
Consider reducing the memory footprint by streaming results, and potentially having a limit on
the number of concurrent scrapes.

	Prometheus Client Library Guidelines
	Conventions
	Overall structure
	Standard metrics types
	Counter
	Gauge
	Summary
	Histogram
	Labels

	Metric names
	Metric descriptions/help
	Exposition
	Packaging and Dependencies
	Performance Considerations

