
Recording user actions using console
utilities APIs

Attention: Externally visible, non-confidential​
Author: alexrudenko@chromium.org​
Status: Inception | Draft | Accepted | Done​
Created: 2021-04-20 / Last Updated: 2021-04-21

One-page overview

Summary
We change the way user actions are recorded to achieve more reliable recordings.

Platforms
All

Team
alexrudenko@chromium.org janscheffler@chromium.org

Tracking issue
1200705

Value proposition
Currently, the debugger API is used to record user actions on a page, i.e., via breakpoints set on DOM
event listeners. This approach has problems outlined in the document Reliable Recording (as well as
alternative solutions). We propose using additional console utilities APIs and in-page recording to
improve stability while allowing for more flexibility.

Code affected
DevTools front-end, backend and V8.

mailto:alexrudenko@chromium.org
mailto:alexrudenko@chromium.org
mailto:janscheffler@chromium.org
https://crbug.com/1200705
https://docs.google.com/document/d/1b4wMVPL7biYw_xM_GpUPunakjcJu14_Tshv-O4E4aWg/edit

Signed off by
Name Write (not) LGTM in this row

bmeurer@chromium.org LGTM

sigurds@chromium.org LGTM

mathias@chromium.org LGTM not blocking on the pop-up issue sgtm

caseq@chromium.org LGTM

...

Core user stories
As a user I want to record scenarios on a page so that I can replay it later. The recording should be
reliable (capture all events consistently).

Design

High-level description
To record user interactions we do the following when a recording is started:

1.​ We evaluate a script in the target page that sets up event listeners for events that are relevant
for recordings.

a.​ We use Runtime.evaluate and Page.addScriptToEvaluateOnNewDocument to do that.
b.​ We set the includeCommandLineAPI attribute to allow the evaluated scripts to access

additional DevTools APIs that are also exposed in the DevTools console.
2.​ We add a binding using Runtime.addBinding to allow the injected scripts to send data back to

the recorder.
3.​ We expose two additional functions via the console utilities API (getAccessibleName(node)

and getAccessibleRole(node)) which allow reading the a11y data synchronously. This step
is what allows us to stop using event listener breakpoints and reliably record element
selectors.

Front-end changes
On the frontend, we create a new TS file called RecordingClient.ts that contains the code that will
be injected into the inspected pages. The file exports a single function called
setupRecordingClient that contains the recording logic in-line. It allows us to evaluate the function
content using setupRecordingClient.toString() and have the advantages of authoring the logic
using TypeScript. The implementation when simplified does the following, for example, when
recording clicks:

const recorderEventListener = (event: Event): void => {

 const target = event.target;

https://chromedevtools.github.io/devtools-protocol/tot/Runtime/#method-evaluate
https://chromedevtools.github.io/devtools-protocol/tot/Page/#method-addScriptToEvaluateOnNewDocument
https://chromedevtools.github.io/devtools-protocol/tot/Runtime/#method-addBinding

 window.addStep(

 JSON.stringify({type: event.type, selector: getSelector(target), value:

target.value}));

};

window.addEventListener('click', recorderEventListener, true);

Here the addStep is the binding that the front-end adds during recording. The bindings and evaluated
scripts are added to a separate isolated world that has access to the page’s DOM but the page cannot
see it.

CDP changes
Currently, Page.addScriptToEvaluateOnNewDocument does not include an option to install console
utilities APIs in the evaluated script. We propose adding the same parameter as Runtime.evaluate
already has to Page.addScriptToEvaluateOnNewDocument: includeCommandLineAPI. Setting this
parameter to true would expose all command line APIs to the script.

Console utilities API changes
We add two more functions to the set of command line APIs in
third_party/blink/renderer/core/inspector/thread_debugger.cc. The following would be
an implementation of these functions:

CreateFunctionProperty(

 context, object, "getAccessibleName",

 ThreadDebugger::GetAccessibleNameCallback,

 "function getAccessibleName(node) { [Command Line API] }",

 v8::SideEffectType::kHasNoSideEffect);

void ThreadDebugger::GetAccessibleNameCallback(

 const v8::FunctionCallbackInfo<v8::Value>& info) {

 if (info.Length() < 1)

 return;

 v8::Isolate* isolate = info.GetIsolate();

 v8::Local<v8::Value> value = info[0];

 Node* node = V8Node::ToImplWithTypeCheck(isolate, value);

 if (auto* element = DynamicTo<Element>(node)) {

 v8::Local<v8::String> result =

 v8::String::NewFromUtf8(isolate, element->computedName().Utf8().c_str())

 .ToLocalChecked();

 info.GetReturnValue().Set(result);

 }

}

V8 changes
In order to add the includeCommandLineAPI flag to Page.addScriptToEvaluateOnNewDocument, we
need to export the CommandLineAPIScope from V8 and the function that creates the API definition.

https://chromedevtools.github.io/devtools-protocol/tot/Page/#method-addScriptToEvaluateOnNewDocument
https://chromedevtools.github.io/devtools-protocol/tot/Runtime/#method-evaluate
https://chromedevtools.github.io/devtools-protocol/tot/Page/#method-addScriptToEvaluateOnNewDocument
https://chromedevtools.github.io/devtools-protocol/tot/Page/#method-addScriptToEvaluateOnNewDocument

The proposed changes are listed in this CL
https://chromium-review.googlesource.com/c/v8/v8/+/2835712

Problem with Pop-ups
The recorder has to record user actions in any pop-up that is opened by the inspected page. For this,
the frontend listens for the target creation event and installs the bindings and scripts into the new
target. Since the pop-up targets are not considered to be related to the main target, the auto-attach
mechanism that allows pausing the navigation until the setup is complete is not working for pop-up
windows. It leads to a possibility that some user actions happen in the pop-up before the recorder is
able to set up the listeners. In order to solve this problem, the DevTools frontend has to have access
to the browser target in order to set up the auto-attach mechanism. Currently, DevTools does not have
access to it and it’s not clear how it can be exposed.

We propose to tackle this problem as a follow up since the impact of this problem might be minimal
because:

-​ Not all web sites rely on pop-ups.
-​ In most cases, DevTools will still set up listeners before any user actions in the pop-up. So far

the issue could only be demonstrated by using automation tools like Puppeteer which are
capable of triggering events immediately after the navigation is over.

Rollout plan
Waterfall (The Recorder is an experiment at the moment).

Core principle considerations

Speed
The change will not have an impact on overall Chrome performance.

Security
The change is based on existing features such as evaluation of scripts in the inspected page,
bindings and exposing additional APIs (a.k.a. Console Utilities APIs). In particular, the additional APIs
are exposed only to our scripts, not to page scripts.

Simplicity
We are able to migrate away from using breakpoints by using two additional APIs (for getting
accessible roles and name for an element). With these APIs the recording can be done inside the
inspected page which allows for complete flexibility when implementing the selector logic.

Accessibility
No UI changes are required for this change so no changes in A11y.

https://chromium-review.googlesource.com/c/v8/v8/+/2835712

Alternatives considered
Alternatively, we could use V8RuntimeAgent::runScript instead of the ClassicScript class that
InspectorPageAgent is currently using. We are not sure if there is a particular reason why
Page.addScriptToEvaluateOnNewDocument is using ClassicScripts so we intend to explore the
possibility of changing the implementation to use V8RuntimeAgent::runScript in the future.

Testing plan
Waterfall

Followup work
Solving the issue with pop-ups if required.

	Recording user actions using console utilities APIs
	One-page overview
	Summary
	Platforms
	Team
	Tracking issue
	Value proposition
	Code affected

	Signed off by
	Core user stories
	As a user I want to record scenarios on a page so that I can replay it later. The recording should be reliable (capture all events consistently).
	Design
	High-level description
	Front-end changes
	CDP changes
	Console utilities API changes
	V8 changes
	Problem with Pop-ups

	Rollout plan
	Core principle considerations
	Speed
	Security
	Simplicity
	Accessibility

	Alternatives considered
	Testing plan
	Followup work

