Managed Root CA Bundle

Document Shared Externally

Original Issue: https://github.com/kubernetes/kubernetes/issues/63726
Author: Jiajie YANG
Date: 2020-05-11

Motivation

- Webhooks/API extensions:
- Audit registration
- Admission registration
- APl registration
Replace CABundle -> CABundleReference would make the config highly portable
https://qithub.com/openshift/enhancements/pull/250
- Container trust bundles
- mTLS Service Meshes need bundle distribution
- Scalability
- Root-ca-cert-publisher use ConfigMap
Avoid copying the cert into every namespace’s configmap

Requirements

e Implement a basic mechanism for cluster administrators to manage trusted CA
bundle in cluster level. They could maintain the CA bundle used within the cluster by
updating specific config in a single place.

Considerations

How do we inject the CA bundle?

There is no clear preference between these two options, so welcome comments on pros &
cons for each option.

Option 1: Projected Volume

We provide the ability for cluster administrators to inject the CA Bundle object as a projected
volume cluster-wide, and application operators could mount the volume to a specific path for
libraries to retrieve the root CA bundle.

Option 2: ClusterConfigMap

Create a new cluster-wide ConfigMap, which is a new key-value pair object, to store the CA
bundle data. All pods in the cluster would be able to read (no RBAC check shall be involved)
this cluster-wide ConfigMap to retrieve the trusted CA bundle.

https://github.com/kubernetes/kubernetes/issues/63726
https://github.com/kubernetes/kubernetes/issues/63726#issuecomment-617921410
https://github.com/openshift/enhancements/pull/250
https://github.com/kubernetes/kubernetes/blob/master/pkg/controller/certificates/rootcacertpublisher/publisher.go

What should be the scope of the injected CA bundle?

We tend to make the injected CA bundle cluster-scope instead of namespace-scope.
(Tim Allclair has made an attempt at https://github.com/kubernetes/kubernetes/pull/67620 to
push master certs to ConfigMap of a certain namespace)
e A cluster-scope trust distribution mechanism would make it easier to dispatch a
default set of CA bundles for some of the use cases.
e From a scalability perspective, cluster-scope would save some space. Each CA
bundle takes 1~400KB, copying CA bundles to multiple namespaces would take up
significantly more storage for configs.

How do we safely roll out a change to a referenced CA Bundle?

Since we want to make the CA bundle as a reference instead of copying the actual
certificate, there should be a safe roll-out plan when updating the bundle. There might be
unexpected pod config referencing the CA bundle getting interrupted when the CA cert itself
gets revoked/updated by cluster administrator.

Maybe it would be an overshoot to develop a general deployment mechanism. Considering
documentation for some manual deployment process? (process like: inject a new CA
bundle_v1.1, update mount reference so that pods use new cert after restart, then remove
previous bundle_v1.0)

Where do we mount the default CA bundle cross OS/platform?

Mounting/referencing some default cluster-wide CA bundle into containers would relieve the
burden of common users writing config about the CA bundle. However, the location of the
default file retrieving root CA bundle might be different for each OS distribution (for defaulted
certs we want to inject).
Since we might have containers with mixed OS distribution within one cluster, we need more
thoughts on how we make sure all supported OS distributions would receive the projected
CA bundle at their default location.
- Shall we mount the volume to different locations based on OS? How do we achieve
that?
- We should not overwrite the existing CA bundle in the container, instead put our
injected bundle alongside with the one carried in the container distro.

Example location of system-default CA bundle:
(from go library trying to locate system CA bundle)

Linux (try read file)

"/etc/ssl/certs/ca-certificates.crt" # Debian/Ubuntu/Gentoo etc.
"/etc/pki/tls/certs/ca-bundle.crt” # Fedora/RHEL 6
"/etc/ssl/ca-bundle.pem’ # OpenSUSE

"/etc/pki/tls/cacert.pem’ # OpenELEC

https://github.com/kubernetes/kubernetes/pull/67620
https://golang.org/src/crypto/x509/

"/etc/pki/ca-trust/extracted/pem/tls-ca-bundle.pem” # CentOS/RHEL 7

unix (try read all files under dir)

"/etc/ssl/certs", // SLES10/SLES11, https://golang.org/issue/12139
"/system/etc/security/cacerts", / Android

"/usr/local/share/certs", // FreeBSD

"/etc/pki/tls/certs”, // Fedora/RHEL
"/etc/openssl/certs”, // NetBSD
"/var/ssl/certs", /] AIX

Windows loadSystemRoots() seems not working as expected currently. Issue:

https://github.com/golang/go/issues/16736

https://golang.org/src/crypto/x509/root_windows.go
https://github.com/golang/go/issues/16736

	Managed Root CA Bundle
	Motivation
	Requirements
	Considerations
	How do we inject the CA bundle?
	What should be the scope of the injected CA bundle?
	How do we safely roll out a change to a referenced CA Bundle?
	Where do we mount the default CA bundle cross OS/platform?

