
Star Life Cycle

A STAR IS BORN - STAGES COMMON TO ALL STARS

All stars start as a **nebula**. A **nebula** is a large cloud of gas and dust. Gravity can pull some of the gas and dust in a nebula together. The contracting cloud is then called a **protostar**. A protostar is the earliest stage of a star's life. A **star** is **born when the gas and dust from a nebula become so hot that nuclear fusion starts.** Once a star has "turned on" it is known as **a main sequence star**. When a main sequence star begins to run out of hydrogen fuel, the star becomes a **red giant** or **red super giant**.

THE DEATH OF A LOW OR MEDIUM MASS STAR

After a low or medium mass or star has become a red giant the outer parts grow bigger and drift into space, forming a cloud of gas called a **planetary nebula**. The blue-white hot core of the star that is left behind cools and becomes a **white dwarf**. The white dwarf eventually runs out of fuel and dies as a **black dwarf**.

THE DEATH OF A HIGH MASS STAR

A dying red super giant star can suddenly explode. The explosion is called a **supernova**. After the star explodes, some of the materials from the star are left behind. This material may form a neutron star. **Neutron stars** are the remains of high-mass stars. The most massive stars become **black holes** when they die. After a large mass star explodes, a large amount of mass may remain. The gravity of the mass is so strong that gas is pulled inward, pulling more gas into a smaller and smaller space. Eventually, the gravity becomes so strong that nothing can escape, not even light.

Name	Period

Question Sheet

Just like living things and humans, stars have a life cycle, which consists of birth, growth, development, middle age, old age, and death. The life cycle of a star spans over billions of years.

Section 1 - Sequencing

The stages below are not in the right order. Number the stages in the correct order.

The star begins to run out of fuel and expands into a **red giant** or **red super giant**.

Stars start out as diffused clouds of gas and dust drifting through space. One of these clouds is called a **nebula**

Fuel is gone, and what happens next depends on the mass of the star.

Heat and pressure build in the core of the **protostar** until **nuclear fusion** takes place.

The force of gravity pulls a nebula together forming clumps called **protostars**.

Hydrogen atoms are fused together generating an enormous amount of energy igniting the star causing it to shine.

Section 2 – Vocabulary

Match the word on the left with the definition on the right.

____ black dwarf

a. star left at the core of a planetary nebula

white dwarf

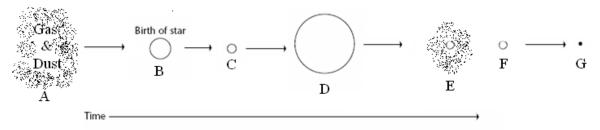
b. a red super giant star explodes

nebula

c. what a medium-mass star becomes at the end of its life

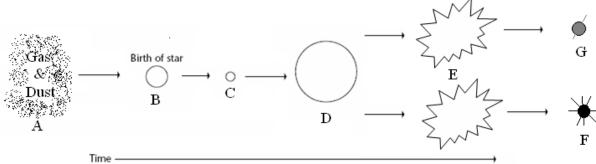
__ protostar

d. a large cloud of gas or dust in space


____ supernova

e. exerts such a strong gravitational pull that no light escapes

____ neutron star ____ black hole **f.** the earliest stage of a star 's life **g.** the remains of a high mass star


Section 3 – Understanding Main Ideas: Low Mass Star

Write down the Letter that matches each object.

- ____ 1. Red giant
- **_____ 2.** Where fusion begins
- 3. Nebula
- ____ 4. Black dwarf
- _____ 5. The stage the sun is in
- **6.** White dwarf
- ____ 7. Planetary Nebula

<u>Section 4 – Understanding Main Ideas: High Mass Star</u> Write down the letter that matches each object.

	Time —			
1. Black Hole				
2 . Supernova				
3. Protostar				
4. Gravity cau	ses this to conder	nse into a protostar		
5. Main seque	nce star			
6. When a star	begins to run ou	t of fuel and grows large	er	
7. Neutron sta	r			
Section 5 - Vocab Use the following w	oulary words to fill in the		C.	N
Black hole Average	Massive Nebulae	White dwarf Super-giants	Supernova Planetary Nebula	Neutron star
of planets.				rst forms. They are pulled ne rest can become a system
mass of our sun as t contracts.	hey lose the nucle	_ come from glant or near fuel at their core. The	he outer layer of this red	to as much as three times the star expands as the core
3. Nebula can form for most of their live	es and they conve	star which can be over t	star that is about the three times as big as our Swhile generating lots of he	e size of our Sun or a Sun! These stars stay in this period eat and light.
collapses in on itsel	f. The electrical	r, aforces at the center of the red supergiant.	is resulte ne star overcome the grav	ed when a red supergiant's core itational pull and create a massive
5. The outer layers	of a red giant kee	p expanding until they e	eventually drift off and fo	rm a
6. Eventually the ou		verage star drift away a It has now run out of n	nd the star becomes a mu uclear fuel to burn off.	ch smaller
			the end of the supergiant sun – it is called a	's life cycle. It has a strong magnetic

8. If the star is very massive or big enough, a even light can escape its gravitational pull!	is formed, which is so dense that not	
even light can escape its gravitational pun:		